LS13181

Encoder / Linear Scale
Counter Card

Software Manual (\V2.0)

ERPHEGF IRF
JS AUTOMATION CORP.

Fratd ook % ¢ 2R 100 5L 6
6F., N0.100, Zhongxing Rd.,
Xizhi Dist., New Taipei City, Taiwan
TEL : +886-2-2647-6936
FAX : +886-2-2647-6940
http://www.automation.com.tw
http://www.automation-js.com/
E-mail : control.cards@automation.com.tw

http://www.automation.com.tw/
http://www.automation-js.com/
mailto:control.cards@automation.com.tw

Correction record

\ersion Record
1.0 firmware v1.0 up
V1.0->V1.1 | Modify the order of the contents (flow chart)
V1.1->V2.0 |disable the software key function with return value always true

Contents

1. How to install the SOftware 0F LSI3L8L........ccciiiiiiiiiiiiiisese et 5
1.1 INSEAI TNE PO UIIVET .t bbbttt bbb r s 5

2. Where to find the file YOU NEEUcviiieiece e e 6
3. ADOUL the LSIBL8L SOTIWAIE......ccuiiiiiiiiieiieie ettt bbbttt sreeneas 7
3.1 What you need t0 get StArted..........ccceiiueiieiicic e 7
3.2 Software programming CROICESccuiiieiiiiiieese et e e e 7

4, LSI3181 LANQUAGE SUPPOIT.....eeiiiiiiitiieiiiiieesiiie s sitee sttt e s be et e et et e e st e e st e e snbe e e nnbe e e nnbe e e snbeeennneeans 8
4.1 Building applications with the LSI3181 software library........c.ccccoocevveiiiiiiiiie e 8
4.2 LSI3181 WINUOWS LIDIAITESc.viiiitiiiiiiiiiieieieie sttt sttt bbb 8
5. Basic concepts of digital 1/O CONIOLcoviiiiiiee e 9
5.1 Types of I/O classified by ISOIAtIONcccocoviiiiiiic e 9
5.2 Types of Output classified DY driVEr DEVICEccecveiiiiicececce e 9
5.3 INPUL AEDOUNCE........eiiieeie ettt ettt s b e e e e ae e s teesteenaesseenbeaneesraenreenne e 10
T T o TU L T) (] 0 USSR 10
5.5 Read back of OQULPUL STALUSccuveiieeieiie et e e sre e 11

6. Basic concepts of quadrature enCOer COUNTETcoccueiieieeriesie s este e 12
6.1 INPUL AEDOUNCE TIME....ccuiiiiieiiecie ettt e e e e teere e s be e be e e e nreenneenne e 12
T 14T o[V 8 10] - U1 Y2 USSR 12
TG AT T[T LT T oLV B Y o L= USSR 13
6.4 Homing (COUNtEr CIEAr MOTE)cceeiiiie ettt st et e e sre e sreenre e 14

7. Basic concepts of counter compare fFUNCLIONccovoiiiiiiiciccc e 17
% A O TW g (=T oo 4] o= = oo = USSR 17
7.2 Trigger OULPUL WIALN c..co.viiiecc et et re e 19
7.3 Segment mask off and external gate fUNCLION...........c.cciiiiii i 19
7.4 Position offset compare fUNCLIONcoviiiiii e 20

8. Function format and language differencecooveiieiiic i 22
8.1 Variabhle data tYPES ...ocvie ittt re e 23
8.2 Programming language CONSIAEIAtIONScoviiiiieiie ettt 24

9. Flow chart of application Implementationcccoviiiiiie i 26
9.1 LSI3181 Flow chart of application implementation............cccccovvevieiiiecie e 26
10. Software overview and dll fUNCLION...........ooiiiiiiie s 29
10.2 INItIAliZAtION AN CIOSE ... oottt sb e e 29
Y KN R I 1o T LSS PRPRPRRN 29

Y 1 3 o [0 PSRRI 29
LSIBL8L INTO .ttt ettt ettt n bbb e e b b eenneens 29

10.2 INPUL/OULPUL FUNCLION ...ttt sttt st 30
LSI3181 POt _POIAritY SBL......coiiiiiiiieiiieie ettt bbb rs 30
LSI3181 port_polarity FEAU.........cciiieiiiie ettt ns 31
LSI3181 debOUNCE_tIME_SEL.......iiiiiiieiiiie et e 32

LSI3181 debouncCe tIME AUccveiiieiie ettt saee s 32

Y KO RS oo o A= SO TSRO P PP PPR 33
Y JC 3o A o To] o A =T (o ISR 33
Y 3 R A o To] [ST OSSR 34
Y JC 3R A o To] 1| Al =T Lo OSSP 34
10.3 TIMEE FUNCHION <ottt bbb bbbt e et nb et st nbeereas 35
ST 3 R A €140 T=T =] OSSR 35
Y JC 3 R A €140 T=T] = o ST 35
Y JC 3 Ao A {14 a =T] (o] o OSSR 36
Y KN R O TSR UR ST PTT PR PRTRRN 36
Y KN R O 1= (o E USRSV 37
10.4 Quadrature COUNTEr TUNCLIONccuiiiie et be e sre e e beeenees 38
Y JCH R A O [@ T o Yo - T | V-] OSSP 39
Y JCH R A O [@ I o Yo - T | Y/ =T o ISP 40
Y KN R O [T =T Vo USSR TPTT PRSI 41
Y JC 3R A O T 1T o [T OSSP 42
Y Je 3o A O T 1T o L= =T Lo OSSP 43
Y JC 3R A O @ o oo [-1 F OSSP 44
Y JC 3R A O @ o oo [T -7 Vo OSSP 45
Y JC 3 R A (oo T L= o= SO SRPPR 46
Y KN R O @ - Vo USRS PPRPRRS 46
10.5 HOMING (10 CIEAr COUNTEN)ecuiiieieiie ettt te e be e e nas 47
LSI3181_HOMING _MOUE_SEL.....ccuiiiiiiiiiieieiesie sttt sttt sbe st sne e nneas 47
LSI3181 HOMING _MOdE _FEAAcccveeiieiiieiieeie sttt sttt sre e 49
10.6 COmMPAre FUNCLIONeoiiecceee et e e e e ereesae e e sneeanas 50
LSI3181 COMPAre MO _SEL ...cviiiiiiiieiecie ettt ettt et e e ta et e e sreesteeeesneeanas 52
LSI3181 compare_ MOGE FEAGcceeiueereiieiteeie et esieeste st e e te s e te et e e esra e steeseesreesteeeesneennas 53
LSI3181_compare CMP_OUT SBLuiiiiiiiiiie ettt e s 54
LSI3181 _compare CMP_OUT Feadccuiiiieiiiiii ettt 55
Y RO e oo 10 (= = SRS 56
Y B3 A oo 0T (=] G =T (o PRSP 56
LSI3181 COMPAre VAlUE _SEL......cccuiiiiiiiiieitie et e s 56
LSI3181 _compare ValUe Fadcccoiuiiiiiiiieiie ettt 57
LSI3181 _compare INCrEMENT _SEL.......ciiiiiiieiii ettt e e e s 57
LSI3181 _compare _INCremeNnt _FeaU..........ccuiiiieiieiii e ciie sttt 57
LSI3181 _compare FIFO _ClEATccciiiiie et 58
LSI3181 compare_FIFO_threshold_Set..........ccooiiiiiiiiiiie e 58
LSI3181 compare_FIFO_threshold_read ... 58
LSI3181 _compare_FIFO_UNUSEA_ AUcoviiiiieiieie et 59
LSI3181_compPare _FIFO _SEL... ..ottt 59
LSIB18L_COUNTET _STAM... ..ottt ettt e e b e e b e e e e nan e 60

LSI3181 counter MOGE FEA.......c.ccciiireeiie ittt st sre e e be e s b e e re e saee s 60

IS KO R oo 10| (=] (o] TSRO PP PPR 61

10.7 Compare segment configuration and compare out mask offccccoveveiiiici s, 62
LSI3181 compare_ GATE_ENADIEcocouiiieie et 63
LSI3181 compare GATE_diSablecoveiieiiie e 63
LSI318L CMP_SEOMENT WIITE ..cvviieieiiieie ettt ettt e sn e neeneenneens 63

Y JC 3 R A o o JEST=To [=T o A =T Lo OSSP 64
LSI318L MaSK _Off WIILEveveeiecic et 64
LSI3181L Mask _Off FEAUcceciuiiiiiicce et ne 64
LSI3181 segment _CONIOl WIITE........cciieie et 65
LSI3181 segment _CONIOl Accveieiieie et nas 65

10.8 Position offset compare FUNCLIONcccvoiiiii i 66
LSI3181 comMpPare OffSEL SEL.......coviiiiiicie it 67
LSI3181 compare OffSEt_rad..........ccccviiiiiieii et 67
LSI3181 compare_offset_out Width Set.........cccccoieiiiiiiic e 68
LSI3181 compare_offset_out width readccccoooveiiiiiiiciice e 68
LSI3181 compare _OffSet_ MasK Sel.........ccoiveiiiiiiieieee e 69
LSI3181 compare_offset_ Mask Feadcccoveiiiieiieie e 69
LSI3181 compare _OffSet_OULPUL SEL.......c.cciieiiiiiiicce e 70
LSI3181 compare_offset_OULPUL rEAdccveviiieciece e e 70
LSI3181 compare_offset_output POINt_SEL........c.cccvevieiiiiicieee e 70
LSI3181 compare_offset_output point_readccceeeiieiieiiiiic e 71

10.9 INEEITUPE FUNCHION ...ttt e e s te e reeste e e eneeanas 72
LSI318L TRQ_MASK SBL....c.eiiuieiiiiiite ettt ettt e et esra e ste e sreenteeeeeneennas 72
LSI3181 IRQ_MASK FEAMcueeiiieiiiticiteeie sttt ettt et et e e saeente e e e eneennas 73
LSI3181 IRQ_ProCesS NKccueiiiiiiiiiicie ittt 73
LSI3181_IRQ_ENADIE ...t ettt ettt sb et b e ne s 74
LSI3181_IRQ _AISADIE ... 74
LSI3181 IRQ _StAtUS FEAG......ccueiiiieiiie ittt ettt e et eete e snee e 75
10.10 SECUNILY TUNCLION ..o.viiiiiiciie ettt et e e et e e te e sreeebeesneas 76
LSIB18L PASSWOIT SEL.....eiiiieiieiieeciie ettt ettt be et e et e e st e e teennee e 76
LSI3181 password_Set_defaull...........ccvoiiiiiiiiiii e 76
LSI3181 passWOrd _CRANQEccuiiiiieiie ettt ae e 77
LSI3181 PASSWOIT _CIEAT........ciuiiiiieciie ittt snee e 77
LSI3181 SECUNLY UNIOCKcciiiiiiiiciie it 77
LSI3181 SECUrity StAtUS MBAG.........cciviiiieiiie it eeiie ettt e et e e te e e 78

T I T I 1 SRS 79
12. LSI3181 Error COUES SUMMIAIYccueeiuieueesieesteasiesieesteeseesseestesssesseessesssessesssesssessesssesssessesssesssessessses 82
12.1 LSIB18L Error COUES TADIEcc.viiieieieiiee ettt st 82

1. How to install the software of LS13181

1.1 Install the PCI driver
The PCI card is a plug and play card, once you add a new card on the window system will detect
while it is booting. Please follow the following steps to install your new card.

In WinXP/7 and up system you should: (take Win XP as example)

1. Make sure the power is off

2. Plug in the interface card

3. Power on

4. A hardware install wizard will appear and tell you it finds a new PCI card

5. Do not response to the wizard, just Install the file
(..\LS13181\Software\WinXP_7\ or if you download from website please execute the file
LS13181_Install.exe to get the file)

6. After installation, power off

7. Power on, it’s ready to use

For more detail of step by step installation guide, please refer the file “installation.pdf « on the CD
come with the product or register as a member of our user’s club at:
http://automation.com.tw/
to download the complementary documents.

http://automation.com.tw/

2. Where to find the file you need

WinXP/7 and up
The directory will be located at
..\ JS Automation \LSI3181\API\ (header files and lib files for VB,VC,BCB,C#)
..\ JS Automation \LSI13181\Driver\ (backup copy of LSI3181 drivers)
..\ JS Automation \LSI13181\exe\ (demo program and source code)
The system driver is located at ..\system32\Drivers and the DLL is located at ..\system.

For your easy startup, the demo program with source code demonstrates the card functions and help
file.

3. About the L S13181 software

LSI3181 software includes a set of dynamic link library (DLL) and system driver that you can
utilize to control the interface card’s functions.

Your LSI3181 software package includes setup driver, tutorial example and test program that help
you how to setup and run appropriately, as well as an executable file which you can use to test each of
the LSI3181 functions within Windows’ operation system environment.

3.1 What you need to get started
To set up and use your LSI3181 software, you need the following:
= | SI3181 software
= | SI3181 hardware
Main board
Wiring board (Option)

3.2 Software programming choices
You have several options to choose from when you are programming LS13181 software. You can
use Borland C/C++, Microsoft Visual C/C++, Microsoft Visual Basic, or any other Windows-based
compiler that can call into Windows dynamic link libraries (DLLSs) for use with the LSI3181 software.

4. LSI3181 Lanquage support

The LSI13181 software library is a DLL used with WinXP/7 and up. You can use these DLL with
any Windows integrating development environment that can call Windows’ DLLSs.

4.1 Building applications with the LS13181 software library
The LSI3181 function reference topic contains general information about building LS13181

applications, describes the nature of the LS13181 files used in building LS13181 applications, and
explains the basics of making applications using the following tools:

Applications tools

B Microsoft Visual C/C++

B Borland C/C++

B Microsoft Visual C#

B Microsoft Visual Basic

B Microsoft VB.net

If you are not using one of the tools listed, consult your development tool reference manual for
details on creating applications that call DLLs.

4.2 LSI3181 Windows Libraries

The LSI3181 for Windows function library is a DLL called LS13181.dIl. Since a DLL is used,
LSI3181 functions are not linked into the executable files of applications. Only the information about the
LSI3181 functions in the LS13181 import libraries is stored in the executable files.

Import libraries contain information about their DLL-exported functions. They indicate the
presence and location of the DLL routines. Depending on the development tools you are using, you can
make your compiler and linker aware of the DLL functions through import libraries or through function
declarations.

Refer to Table 1 to determine to which files you need to link and which to include in your
development to use the LS13181 functions in LSI13181.dlI.

Header Files and Import Libraries for Different Development Environments
Language Header File Import Library

Microsoft Visual C/C++ LSI3181.h LSI3181VC.lib

Borland C/C++ LS13181.h LSI13181BC.lib

Microsoft Visual C# LSI13181.cs

Microsoft Visual Basic LS13181.bas

Microsoft VVB.net LS13181.vb

Table 1

5. Basic concepts of digital 1/O control

The digital 1/0 control is the most common type of PC based application. For example, on the main
board, printer port is the TTL level digital 1/0.

5.1 Types of 1/O classified by isolation

If the system and 1/O are not electrically connected, we call it is isolated. There are many kinds of
isolation: by transformer, by photo-coupler, by magnetic coupler,... Any kind of device, they can break
the electrical connection without breaking the signal is suitable for the purpose.

Currently, photo-coupler isolation is the most popular selection, isolation voltage up to 2000V or
over is common. But the photo-coupler is limited by the response time, the high frequency type cost a
lot. The new selection is magnetic coupler, it is design to focus on high speed application.

The merit of isolation is to avoid the noise from outside world to enter the PC system, if the noise
comes into PC system without elimination, the system maybe get “crazy” by the noise disturbance. Of
course the isolation also limits the versatile of programming as input or output at the same pin as the
TTL does. The inter-connection of add-on card and wiring board maybe extend to several meters
without any problem.

The non-isolated type is generally the TTL level input/output. The ground and power source of the
input/output port come from the system. Generally you can program as input or output at the same pin as
you wish. The connection of wiring board and the add-on board is limited to 50cm or shorter
(depends on the environmental noise condition).

5.2 Types of Output classified by driver device

There are several devices used as output driver, the relay, transistor or MOS FET, SCR and SSR.
Relay is electric- mechanical device, it life time is about 1,000,000 times of switching. But on the other
hand it has many selections such as high voltage or high current. It can also be used to switch DC load or
AC load.

Transistor and MOS FET are basically semi-permanent devices. If you have selected the right
ratings, it can work without switching life limit. But the transistor or MOS FET can only work in DC
load condition.

The transistor or MOS FET also have another option is source or sink. For PMOS or PNP transistor
is source type device, the load is one terminal connects to output and another connects to common
ground, but NPN or NMOS is one terminal connects to output and the other connects to VCC+. If you
are concerned about hazard from high DC voltage while the load is floating, please choose the
source type driver device.

SCR (or triac) is seldom direct connect to digital output, but his relative SSR is the most often
selection. In fact, SSR is a compact package of trigger circuit and triac. You can choose zero cross
trigger (output command only turn on the output at power phase near zero to eliminate surge) or direct
turn on type. SSR is working in AC load condition.

5.3 Input debounce

Debounce is the function to filter the input jitters. From the microscope view of a switch input, you
will see the contact does not come to close or release to open clearly. In most cases, it will
contact-release-contact-release... for many times then go to steady state (ON or OFF). If you do not
have the debounce function, you will read the input at high state and then next read will get low state,
this maybe an error data for your decision of contact input.

Debounce can be implemented by hardware or software. Analog hardware debounce circuit will
have fixed time constant to filter out the significant input signal, if you want to change the response time,
the only way is to change the circuit device.

If digital debounce is implemented, maybe several filter frequency you can choose. To choose the
filter frequency, please keep the Nyquist-Shannon sampling theorem in mind: filter sample frequency
must at least twice of the input frequency. The following sample is a bad selection of debounce filter, the
input frequency is not as low as les than half of the sample frequency, the output will generate a beat
frequency.

<- Input frequency at 835Hz

<- Output of digital filter,
Please note the beat frequency.

Digital debounce circuit work at 1KHZ sample rate and observe the output of filter from 835Hz input

Software debounce will consume the CPU time a lot, we do not recommend to use except for you
really know you want.

5.4 Input interrupt
You can scan the input by polling, but the CPU will spend a lot of time to do null task. Another way
is use a timer to sample the input at adequate time (remind the Nyquist-Shannon sampling theorem, at
least double of the input frequency). The third one is directly allows the input to generate interrupt to
CPU. To use direct interrupt from input, the noise coupled from input must take special care not to
mal-trigger the interrupt. LSI3181 card has 8 bit isolated digital input and 8 bit isolated digital output.
Each input can be configured as external interrupt source.

10

5.5 Read back of Output status
Some applications need to read back the output status, if the card do not provide output status read
back, you can use a variable to store the status of output before you really command it output. Some
cards provide the read back function but please note that the read back status is come from the output
register, not from the real physical output.

11

6. Basic concepts of quadrature encoder counter

6.1 Input debounce time

If the counter input signal comes from the noisy environment, the input needs to filter out the
unwanted signal and keep the meaningful signals to go through to counter. A programmable debounce
digital filter put in the way of input signal to drop out the unwanted signal is a good choice.

Users can use the default debounce time constant or change depending on the signal speed and
environment noise. A noisy environment normally needs large time constant to drop out the unwanted
signal and high pulse rate limits the time constant you can choose. At default, the debounce function will
drop the pulse duration less than 1us (debounce frequency 1M). You can choose one from 512K, 1M,
2M, 4M, 8M, 16M to meet your requirement.

6.2 Input polarity
For the maximum flexibility, the polarity function will change the input signal to meet the
requirements of the following function blocks. Say A phase leads B in your external signal input, you
can invert the A phase to change to B phase leads A phase without actually change the wiring.

A phase leads B

| | From left diagram, you can see A
phase change polarity is

B phase equivalent to change A phase

from lead state to lag state.
ot~ I N

B phase leads A (inverted)

A phase |

12

6.3 Signal input type

In LS13181 card, there are 3 major signal types can be count.

Quadrature input type

x 4 pulse
O | I
wome

The left diagram shown that A phase
leads B, if we take A leads B as
up count and the counting
pulse of up count will depends
on the multiple rate.

On the other hand, if B phase leads
A phase, the counter will be
down count.

CW and CCW input type (Dual pulse mode)

CW pulse —I —I

CCW pulse —I —I _I

counter+1 counter+1

counter-1 counter-1 counter-1

The left diagram shown that CW
and CCW pulses. Any CW
pulse input will increase
counter by 1 and any CCW
pulse input will decrease
counter by 1.

13

Clock and direction input type (Single pulse mode)

The left diagram shown that Clock
Clockpulse _I _I _I _I _I and Direction pulses. Any
Clock pulse input will increase
counter by 1 while the
Direction signal is make and
any Clock pulse input will
decrease counter by 1 while
Direction signal is break.

Direction

counter+1 counter+1

counter-1 counter-1 counter-1

6.4 Homing (counter clear mode)

Normal counters use external asynchronous reset to clear counter but the quadrature counter
generally provides more versatile functions to fit the need of different applications. In most quadrature
counter applications the counter clear function also called as counter “HOMING”.

There are several modes to do homing:

1. counter clear at A,B,Z and Home active

Home J
A phase J
B phase _l
4 phaseJ

The counter will be cleared while A,B Z
and Home are all “make”.

rr

— ——
counter clear

14

2. counter clear at first A,B,Z active . .
after HOME turn to inactive and up count The counter will be cleared while the

following conditions meet:
1. HOME switch turns into “BREAK” state.

—
s onase 1]] | 2. first A,B Z are all “MAKE” and counter up
L |
_

Home

counts (suppose A phase leads B phase).

B phase

Z phase

— -
counter clear

3. counter clear at first A,B,Z active

after HOME turn to inactive and down count The Counter Wi” be C|ear9d Whlle the fOIIOWing
conditions meet:
Home 1. the HOME switch turns into “BREAK” state.

2.first A,B Z are all “MAKE” and counter down
counts (suppose B phase leads A phase).

A phase J | |
B phase \—, I

Z phase |

— -
counter clear

4. counter clear at tailing edge of HOME . .
The counter will be cleared at the tailing edge

of the HOME switch.

Home

counter clear

5. counter clear at rising edge of CLEAR_IN . o
The counter will be cleared at the rising edge

of the CLEAR_IN signal input.
CLEAR_IN

counter clear

15

6. Trailing edge of HOME starts Z phase counter

and count down to "0" clear quadrature counter The counter will be cleared the following
conditions meet:
HOME . .
1. the HOME switch turns into “BREAK” state.
7 countor I 1l 2. Since the HOME tailing edge, Z phase counter
Zooger =2 B counts down to “0”

counter clear

7. Z phase counter count down to "0"

clear quadrature counter The counter will be cleared while Z phase counter
H H counts down to “0”.
Z counter

Z counter =2 =1 =0

|
counter clear

16

7. Basic concepts of counter compare function

The most powerful function of LSI13181 card is the high speed comparison function. You can use
this function to trigger external devices such as CCD camera to catch vision data.

ci_module

A irq
up >

gate(INOO)

B—> d t
> ci_mode [—> multiple_rate oun > counter comparator

Z —> ci_polarity

out_mode

clear

Home—> polarity

CLEAR_IN—> |—>err0r
out_width

compare_mode

| -
|

increment_data

buffer

compare_mode

(

rigger_out
pop up data “ out_polarity

\

FIFO Eull mask off
1024 ’ irq segment0_compare
fifo_empty_thresh near empty fifo_status . .
interior/
segmentl_compare [—> exterior
Empty encoder counter dag
segment2_compare

WCOUNT! fity index

fig. 7.1 Function block of encoder counter card

From the above diagram, while the comparator compares equal, it will generate a trigger output and
maintain the pulse at out_width duration. External gate function can block the trigger output while it is at
“break” state.

7.1 Counter compare mode
The comparator can work in one of the 3 modes: single compare, auto-increment compare and
FIFO compare mode.

Single compare mode (One-time compare mode)
The desired compare value is pre-loaded, if the quadrature counter value and the compare value
meet the compare condition (i.e. data equal), generate output trigger.

17

Auto increment compare mode

If the compare value (compare data) not only store at the preset register (compare value register)
but also other subsequent data is define by an incremental value of current compare value. After one
compared condition met, the preset register (compare value register) will be loaded a data which is the
sum of current compare value and the incremental value to proceed the next compare.

new compare value= current compare value + auto increment value

(NOTE: the incremental value can be a minus value, this means a decrement of current compare
value)

Slide [_| >
Lineapscaje [VIVV[VHRLQERRRTITTTITULATLENA
Trigger out 1 ' _>| <

P'ograELmable
— < duration
Aut
increment

Gate(IN0O) | |

Trigger out ||
Mask off (interior) A A po St gt

Trigger out I
Mask off (exterior) AA A b oo

Trigger out

fig. 7.2 Auto increment compare and compare output mask function

FIFO compare mode

If the compare value (compare data) not only store at the preset register (compare value register)
but also other subsequent data stored at a FIFO (first in first out memory), after one compared condition
met, the FIFO will supply the preset register (compare value register) a new pop up data to proceed the
next compare. The FIFO data can be in absolute or relative mode.

In absolute mode:

compare value= value pop up from FIFO

In relative mode:
compare value= current compare value + value pop up from FIFO

The compare function will continue until the FIFO is empty.

18

Slide [] -

TTTT T T T[T I TT T T TTT T TTTT

Linear scale

Trigger out Tu 1 —>' <
Programmable
— L duration
FIFO
programmable
Gate(IN0O) | |

Trigger out ||

Mask off (interior) AAAAAA A A A
Trigger out I

Mask off (exterior) A AAAAAAAA AP AAAAAA S
Trigger out U

fig. 7.3 FIFO compare and compare output mask function

7.2 Trigger output width
It is apparently that you will use the trigger output (CMP_OUT) to trigger some device to start
some tasks. Not every device is so fast to recognize the compare out pulse. A compare out pulse width
(or duration) timer will extend the pulse to your need. LSI13181 card provide the compare equal pulse
duration on a 1us base and 16 bit data length. (refer fig. 7.3, programmable duration means the trigger
output pulse width)

7.3 Segment mask off and external gate function

The segment mask off function is only meaningful for FIFO mode and auto increment mode. The
external gate control (INOQ) can override to disable the trigger output by external signal.

Let us begin to explain the segment mask off function from fig. 7.1 Function block of encoder
counter card shown above. At the left top, the counter is counting on the fly once your configuration is
done. The A, B ,Z phase input signals determines the counter value and direction.

The counter value is sent to comparator at which another comparison source is selected from FIFO
or Auto increment mode. If the two coming values are met, the comparator will generate a trigger to
proceed with the auto increment state machine or pop up data from FIFO. But the trigger will going out
as CMP_OUT signal or not depends on the other control signals.

At the right most, the CMP_OUT is the final output trigger, it is controlled by compare segment
and interior/exterior mask off and external gate. The external gate signal comes from INOO its polarity
can be programmed as your physical hardware to gate the trigger signal to CMP_OUT pin.

Refer to fig. 7.2 Auto increment compare and compare output mask function, you can see the
hardware mask and segment mask off (interior or exterior) example.

19

There are total 3 segments to configure. You can set the segment at a specific coordinate, say
segment0 from1,000 ~ 10,000, then enable segment0. If you set mask off to interior, the compare equal
pulses at interior of segment0 will be masked off and only the compare equal pulses of segment exterior
can pass the compare out trigger. If you set mask off at exterior, only the compare equal pulses inside the
segmentO can generate compare out trigger. The segmentl and segment2 also have the same function as
segment0 does. If you disable the segment function, no segment mask off function will be of the
disabled segment.

7.4 Position offset compare function
For some special applications, there are many CCD cameras to take photos and the software sew up
the separate photos to become a big picture. If the CCD trigger point can be offset by encoder counter
card, the software sew up will be fast. The compare base position can be come from FIFO or
auto-increment function and its output is CMP_QOUT; the offset value will modify the compare value on
the fly as:
Compare_0 = Compare value(base position) +offset_0

Compare_7 = Compare value(base position) +offset_7

The offset value can be negative or positive, negative means the trigger point before the base
position and positive offset means after base position; a zero offset will trigger on the same position of
base position. The trigger pulse can also configure separately as user required (refer fig 7.4).

Offset 7 compare_?—»{ Pulse width_7 ’—»{ Mask_7—CMPZ,OUT
—]
]

single position
Offset 0 compare_O—b{ Pulse width_0 ’—»{ Mask_| CMPQ_OUT
Auto-Increment mode
select
{ o o} -

FIFO compare

current position
counter

out_mode

out_width

%

segment0_compare

segment1_compare

segment2_compare

fig. 7.4 Block diagram of position offset compare function

20

FIFO/Auto increment offset compare

Slide [] >

Linear scale [TTTTTTTTTTTTTTTTITTITTITIITTTT]

CMP_OUT
CMPO_OUT
CMP7_OUT L]
Negative 5 | Positive | <«
offset o offset

1

Pulse width Basic compare
fig. 7.5 Position offset compare function with positive offset and positive offset

In the fig.7.5, you can see the base position compare output (CMP_QUT). If the offset is negative
the compare out pulse will be generate before the CMP_OUT and if the offset is positive, the pulse will
be generated after the CMP_OUT on the assumption that the motion direction is from negative to
positive.

Special note: the offset can only in the range of successive trigger point of base position and at
least 3 pulses more or less depends on positive or negative.

21

8. Function format and lanquage difference

Every LSI3181 function is consist of the following format:
Status = function_name (parameter 1, parameter 2, ... parameter n);

Each function returns a value in the Status global variable that indicates the success or failure of
the function. A returned Status equal to zero that indicates the function executed successfully. A
non-zero status indicates failure that the function did not execute successfully because of an error, or
executed with an error.

Note : Status is a 32-bit unsigned integer.

The first parameter to almost every LSI3181 function is the parameter CardID which is located the
driver of LSI3181 board you want to use those given operation. The CardID is assigned by
DIP/ROTARY SW. You can utilize multiple devices with different card CardID within one application;
to do so, simply set the hardware and pass the appropriate CardID to each function.

Note: CardID is set by DIP/ROTARY SW (0x0-0xF)

22

8.1 Variable data types
Every function description has a parameter table that lists the data types for each parameter. The
following sections describe the notation used in those parameter tables and throughout the manual for

variable data types.

23

Primary Type Names
" . Pascal
Name Descripti Range C/C+ Visual BASIC i
(Borland Delphi)
on +
ug | 8-bit ASCII 0 to 255 char [Not supported by BASIC. Byte
character For functions that require
character arrays, use
string types instead.
i16 | 16-bitsigned | -32,768 to 32,767 short Integer (for example: Smallint
integer deviceNum©%)
ulé 16-bit 0 to 65,535 unsigned |Not supported by BASIC. Word
unsigned short for |For functions that require
integer 32-bit |unsigned integers, use the
compilers| signed integer type
instead. See the 116
description.
i32 | 32-bitsigned | -2,147,483,648 to long Long (for example: Longlint
integer 2,147,483,647 count&)
u3?2 32-bit 0to unsigned |Not supported by BASIC. Cardinal (in 32-bit
unsigned 4,294,967,295 long |For functions that require operating
integer unsigned long integers, |systems). Refer to
use the signed long the 132
integer type instead. See | description.
the 132 description.
32 32-hit -3.402823E+38 to float Single (for example: Single
single-precisio| 3.402823E+38 num!)
n
floating-point
value
64 64-bit -1.797683134862315 | double Double (for example: Double
double-precisi E+308 to voltage Number)
on 1.797683134862315E
floating-point +308
value
Table 1

8.2 Programming language considerations

Apart from the data type differences, there are a few language-dependent considerations you need
to be aware of when you use the LS13181 API. Read the following sections that apply to your
programming language.
Note: Be sure to include the declaration functions of LS13181 prototypes by including the appropriate
LSI3181 header file in your source code. Refer to 4.2 LSI3181 Windows Libraries for the header file
appropriate to your compiler.

821 C/C++

For C or C++ programmers, parameters listed as Input/Output parameters or Output parameters are
pass-by-reference parameters, which means a pointer points to the destination variable should be passed
into the function. For example, the Read Port function has the following format:

Status = LS13181_port_read(u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the following
example:

u8 CardID, port;

u8 data,

u32 Status;

Status = LSI13181 port_read (CardID, port, &data);

8.2.2 Visual basic

The file LSI3181.bas contains definitions for constants required for obtaining LSI13181 Card
information and declared functions and variable as global variables. You should use these constants
symbols in the LSI3181.bas, do not use the numerical values.

In Visual Basic, you can add the entire LS13181.bas file into your project. Then you can use any of
the constants defined in this file and call these constants in any module of your program. To add the
LS13181.bas file for your project in Visual Basic 4.0, go to the File menu and select the Add File...
option. Select LS13181.bas, which is browsed in the LSI3181 \ API directory. Then, select Open to add
the file to the project.

To add the LSI13181.bas file to your project in Visual Basic 5.0 and 6.0, go to the Project menu and

select Add Module. Click on the Existing tab page. Select LSI13181.bas, which is in the LSI3181 \ API
directory. Then, select Open to add the file to the project.

24

8.2.3 Borland C++ builder
To use Borland C++ builder as development tool, you should generate a .lib file from the .dll file
by implib.exe.
implib LS13181BC.lib LS13181.dll
Then add the LSI13181BC.lib to your project and add
#include “LSI13181.h” to main program.

Now you may use the dll functions in your program. For example, the Read Port function has the
following format:

Status = LS13181_port_read(u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the following
example:

u8 CardID, port;

u8 data;

u32 Status;

Status = LSI13181 port_read(CardID, port, &data);

25

Flow chart of application implementation

9.1 LSI3181 Flow chart of application implementation

< Application Start >

LSI3181

Driver Initial Error

_initial()

Unlock software key

LSI3181_sec

Error

urity_unlock()

Success

Operation of

LSI3181 card

Error

Exit

Release D

Close application

LSI3181_close()

Error

Il resource

End

Exception process

Setup timer function

Setup timer t
LSI3181_ti

mer_set ()

ime constant

for t

setup interrupt

imer

Start timer function
LSI3181_ timer _start ()

end

26

Digital 10 operation

Set 1/O polarity
LSI3181_port_polarity_set()

Setup debounce time
LSI13181_debounce_time_set ()

1/0 operation
LSI13181_port_set ()
LSI13181_port_read ()
LSI3181_port_point_set ()
LSI3181_port_point_read ()

(Return)

Setup Interrupt

Setup IRQ source
LSI3181_IRQ_mask_set ()

{

Link IRQ process
LSI3181_IRQ_process_link ()

Enable Interrupt
LSI3181_IRQ_enable ()

Interrupt is configured
End

Hardware Homing function

Counter function

Setup counter I/O polarity [Error .

; Setup counter I/O polarity [Error
LSI13181_CIO_polarit t

~ClO_polarity_set () LSI3181_CIO_polarity_set ()

Setup Homing mode Error Setup counter input mode,
LSI3181_HOMING_mode_set() debounce time and Error
multiple rate

LSI3181_Cl_mode_set()

{

Setup counter function Error Access real time counter value | Error
LSI3181_counter_start() LSI3181_counter_read()

Wait for hard homing
13181_HOMING_mode_rea

Error process
(Return)

IF required
Set Absolute coordinate
LSI3181_counter_set()

(Return > Error process

Error

27

Auto increment Compare function

Setup counter 1/O polarity

Error

LSI3181_CIO_polarity_set()

Setup counter working mode
debounce time and multiple rate
LSI3181_Cl_mode_set()

Error

Setup compare output mode
and output pulse width

Error

LSI13181_CO_mode_set()

Setup compare working mode
as auto increment mode

Error

LSI3181_compare_mode_set()

Setup counter origional value

Error

LSI3181_counter_set()

Setup first compare value

Error

LSI3181_compare_value_set()

Setup auto increment value
LSI3181_compare_increment_set()

Error

Counter start operation

Error

LSI3181_counter_start()

Y

Wait for compare equal interrupt
or doing other task

Error processing

28

Auto FIFO Compare function

Setup counter 1/O polarity
LSI3181_CIO_polarity_set()

Error

Setup counter working mode

LSI3181_CI_mode_set()

debounce time and multiple rate

Error

Setup compare output mode

Error

and output pulse width
LSI3181_CO_mode_set()

Setup compare working mode
as FIFO compare mode
LSI13181_compare_mode_set()

Error

{

Setup counter origional value
if necessary
LSI3181_counter_set()

Error

Setup first compare value
LSI13181_compare_value_set()

Error

Clear FIFO
LSI3181_compare_FIFO_clear()

Error

Set FIFO threshold

LSI3181_compare_FIFO_threshold_set()

Error

Fill FIFO data
LSI3181_compare_FIFO_set()

Error

Counter start operation

Error

LSI3181_counter_start()

Wait for FIFO near empty interrupt
(if you have setup interrupt)
or doing FIFO checking to fill

LSI13181_compare_FIFO_unused_read()

Error processing

10. Software overview and dll function

10.1 Initialization and close
You need to initialize system resource each time you run your application,
LS13181_initial(') will do.
Once you want to close your application, call
LSI13181 close() to release all the resource.
If you want to know the physical address assigned by OS, use
LS13181 info() to get the address.

® | SI3181 initial

Format : u32 status =LSI13181 initial (void)
Purpose: Initial the LS13181 resource when start the Windows applications.

® | SI3181 close

Format : u32 status = LSI13181 close (void);

Purpose: The LSI3181 close () function is corresponded with LSI3181 initial () function to
make LSI3181 card windows application program completely ended and memory fully
be released.

® | SI3181 info

Format : u32 status =L.S13181 info(u8 CardID, ul6 *I1O_address, ul6 *TC_address)
Purpose: Read the physical 1/0 address assigned by O.S..

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description
IO_address ulé physical 1/0 address assigned by OS
TC_address ulé physical timer/counter I/O address
assigned by OS

29

10.2 Input/Output function
For the easy use of digital input / output or the signal and control input / output, the logic polarity
configure as you need will release the complexity of your application. Use
LSI13181 port_polarity_set () to set digital input/output port logic polarity.
LSI13181 port_polarity _read () to read back the digital input/output port logic polarity.
To eliminate the input noise, debounce filter is a good solution. LSI3181 card provides software
input debounce circuit, before using the digital input, selecting an adequate filter frequency by:
LSI13181_debounce_time_set() and read back setting by
LSI13181 debounce_time_read().
To output data
LS13181 port_set() will do.
To read digital input /output status
LSI13181_port_read () will do.
To set a dedicate digital output, use
LSI13181 point_set() and to read back the digital input/output status by
LSI13181 point_read()

® | SI3181 port polarity set

Format : u32 status = LSI3181_port_polarity_set (u8 CardID, u8 port, u8 polarity)
Purpose: To set LSI3181 card’s digital 1/0 port polarity.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port us8 0: input port
1: output port
polarity u8 b7: INO7 for input port, OUTQ7 for output port

0: normal polarity (default)
1: inverse polarity

b0: INOOfor input port, OUTOO for output port
0: normal polarity (default)

1: inverse polarity

30

® | SI3181 port polarity read

Format : u32 status = LSI3181 port_polarity _read (u8 CardID, u8 port, u8 *polarity)
Purpose: To read back polarity of digital 1/0 port point.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
port us8 0: input port
1: output port
Output:
Name Type Description
polarity u8 b7: INO7 for input port, OUTOQ7 for output port

0: normal polarity (default)
1: inverse polarity

b0: INOOfor input port, OUTOO for output port
0: normal polarity (default)

1: inverse polarity

31

® | SI3181 debounce time set

Format : u32 status = LSI13181_debounce_time_set (u8 CardID, u8 debounce_time)
Purpose: Set the input port debounce time

Parameters:

Input:
Name Type Description
CardID u8 assigned by Rotary SW

debounce_time u8 Debounce time selection:
0: no debounce

1: debounce frequency 100 Hz, filter out duration less

than 10ms (default)
2: debounce frequency 200 Hz, filter out duration less

than 5ms
3: debounce frequency 1K Hz, filter out duration less

than 1ms

® | SI3181 debounce time read

Format : u32 status = LSI3181_debounce_time_read (u8 CardID, u8 * debounce_time)
Purpose: Read back the input port debounce time configuration

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
Output:
Name Type Description
debounce_time u8 Debounce time selection:

0: no debounce
1. debounce frequency 100 Hz, filter out

duration less than 10ms (default)
2: debounce frequency 200 Hz, filter out
duration less than 5ms
3: debounce frequency 1K Hz, filter out
duration less than 1ms

32

® | S|3181

port set

Format : u32 status = LSI3181 port_set (u8 CardID, u8 port, u8 data)
Purpose: To set LSI3181 card’s DIO output.
Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
port us8 0: invalid
1: output port
data us8 b7: OUTQ7 for output port

b0: OUTOO for output port

® | SI3181 port read

Format : u32 status = LSI3181 port_read (u8 CardID, u8 port, u8 *data)
Purpose: Toread LSI3181 card’s DIO port status.
Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port us8 0: input port
1: output port
Output:
Name Type Description
data u8 b7: state of INO7 for input port or OUTO7 for

output port

b0: state of INOO for input port or OUTOO for
output port

33

® | SI3181 point set

Format : u32 status = LSI3181 point_set (u8 CardID, u8 port, u8 point, u8 state)
Purpose: To set LSI3181 card’s digital input/output point.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
port us8 0: invalid
1: output port
point us8 Point designated
7~0 for OUT07~0OUTO00
state u8 Data (0 or 1) will set the designated pint

® | SI3181 point read

Format : u32 status = LSI3181 point_read (u8 CardID, u8 port, u8 point, u8 *state)
Purpose: To read LSI3181 card’s digital input/output point status.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port us8 0: input port
1: output port
point us8 Point designated
7~0 for b7~b0
Output:
Name Type Description
state u8 Returned status (0 or 1) of the designed bit

34

10.3 Timer function
The build in 32 bit timer based on 1 us time base can be used as system clock to generate interrupt
for periodical task.
To setup timer or change time constant
LS13181 timer_set() and start by
LSI13181 timer_start() and stop by
LSI13181 timer_stop()
If you want to dedicated control the timer associated registers, use
LS13181 TC_set() to set registers and use
LS13181 TC read() to read back settings.

® | SI3181 timer set

Format : u32 status = LSI3181 timer_set (u8 CardID, u32 time_constant)
Purpose: To setup timer operation mode or update timer

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY switch
time_constant u32 Timer constant based on 1us clock
Note:

1. Time constant is based on 1us clock, period T= (time_constant +1) * 1us
2. If you also enable the timer interrupt, the period T must at least longer than the system interrupt
response time else the system will be hanged by excess interrupts.

® | SI3181 timer start

Format : u32 status = LSI3181_timer_start (u8 CardID)
Purpose: To start timer operation mode

Parameters:

Input:

Name Type Description
CardID u8 assigned by DIP/ROTARY switch

35

® | SI3181 timer stop

Format : u32 status = LSI13181 timer_stop (u8 CardID)
Purpose: To stop timer operation mode

Parameters:

Input:

Name Type Description
CardID u8 assigned by DIP/ROTARY switch

® | SI3181 TC set

Format : u32 status=LSI3181 TC set (u8 CardID, u8 index, u32 data)
Purpose: To load data to timer related registers

Parameters:

Input:

Name Type Description
CardID ug assigned by DIP/ROTARY SW
index u8 0: TC_CONTROL
1: PRELOAD
2: TIMER
data u32 For TC_CONTROL

0: stop timer operation

1: timer run

For PRELOAD or TIMER
Data is the constant to be load

Note: PRELOAD is the register for timer to re-load, the value will be valid while timer count to
zero and reload the data.

36

® | SI3181 TC read

Format : u32 status=LSI3181 TC read (u8 CardID, u8 index, u32 *data)
Purpose: To read data from timer related registers

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
index u8 0: TC_CONTROL
1: PRELOAD
2: TIMER
Output:
Name Type Description
data u32 Data read back

Note: Meaning of setting or return value of different index

index register value meaning
0 |tc conTROL lo~1 Oftl_mer stops operation
- 1: timer runs
1 |PRELOAD 1~Oxffffffff |timer preload value
2 |TIMER 1~Oxffffffff |Timer value on the fly

Note:

For example, you want to watch the timer counting on the fly, use
LS13181_TC_read (CardID,index, *data) //CardID as you assign, index=2
To read back the timer value.

37

10.4 Quadrature counter function
For the most flexible of quadrature counter, input (A,B,Z and HOME,CLEAR_IN)and output
(CMP_OUT) polarity can be changed by software:
LSI13181_CIO_polarity_set() and read back the status by
LSI13181 _CIO_polarity_read()
Even the counter input changing from time to time, you can read the input status on the fly by
LS13181_CIO_read()

The counter can function in one of the 3 working mode: quadrature mode, dual pulse mode or
single pulse mode. If you are interfacing with linear scale or rotary encoder, quadrature mode is the only
selection. If you intend to count the motion pulse from some other controller or just to count external
pulses, dual pulse mode or single pulse mode is possible. (refer section 6.3 Signal input type).

Except for the input type, the input debounce time is also importance for proper operation. LS13181
provide from 512KHz (1.95us) up to 8MHz(0.0125us) software filter to filter out noise.

LSI13181_CIl_mode_set() is used to setup all the input configurations. To read back settings by
LSI13181 CI_mode_read().

LSI3181 counter also provide multi-function compare output. You can block the output by external
gate input (INOO) or program the compare output as pulse (pulse width programmable) or as level output
or toggles output as the compare value coincides.

LSI13181_CO_mode_set() provide all the required function configurations. You can read back
by LSI13181_CO_mode_read().

In some toggle mode application you want to make sure the toggle output state, the dlls provide

LSI13181 toggle preset() to preset the initial state of toggle output and read back the current
compare output status by
LS13181_CO_read().

38

® | SI3181 CIO polarity set

Format : u32 status = LSI3181 CIO_polarity_set (u8 CardID, ul6 polarity)
Purpose: To set LSI3181 card’s high speed counter related input and output polarity.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
polarity ulé |b8: compare_out_mask_pol

= 0, normal, the compare out signal will be
mask off at interior area of segments.
=1, invert, the compare out signal will be
mask off at exterior area of segments.

b7: CMP_OUT polarity
b6: null
b5: null
b4: CLEAR_IN polarity
b3: HOME input polarity
b2: Z_phase input polarity
bl: B_phase input polarity
b0: A_phase input polarity
A bit set to 0 mean the corresponding input or
output normal polarity (default).
A bit set to 1 means the corresponding input or
output is inverse polarity

39

® | SI3181 CIO polarity read

Format : u32 status = LSI3181 CIO_polarity_read (u8 CardID, ul6 *polarity)
Purpose: To read back the LSI3181 card’s high speed counter related input and output polarity.
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description
polarity ulé |b8: compare out_mask_pol

= 0, normal, the compare out signal will be
mask off at interior area of segments.
=1, invert, the compare out signal will be
mask off at exterior area of segments.

b7: CMP_OUT polarity
b6: null

b5: null
b4: CLEAR_IN polarity
b3: HOME input polarity
b2: Z phase input polarity
bl: B_phase input polarity
b0: A_phase input polarity
A bit set to 0 mean the corresponding input or
output normal polarity (default).
A bit set to 1 means the corresponding input or
output is inverse polarity

40

® | SI3181 CIO read

Format : u32status = LSI3181 CIO _read (u8 CardID, u8 *CIQO_state)
Purpose: To read back the LSI3181 card’s high speed counter related input and output status.
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description

CIO_state u8 b0: A phase input state
bl: B phase input state
b2: Z phase input state
b3: HOME input state
b4: CLEAR_IN (clear) input state

b5: Z phase toggled flag

(first Z input trigger to MAKE, 2" trigger to
BREAK, 3" MAKE ...)

Note: The Z phase input is very difficult to watch even by a scope but you can verify the “Z phase
trigger toggled flag” to proof its occurrence.

41

® | SI3181 Cl mode set

Format : u32status = LSI3181 CIl_mode_set (u8 CardID, u8 in_mode, u8 debounce_time,
u8 multiple_rate)

Purpose: To set LSI3181 card’s high speed counter input mode.

Parameters:

Input:

Name Type Description
CardID us8 assigned by DIP/ROTARY SW
in_mode u8 |0: QUADRATURE_MODE
A, B phase quadrature signal at A and B input pin
1:.DUAL_PULSE_MODE
CW and CCW signal at A and B input pin
2:SINGLE_PULSE_MODE
Clock and Direction signal at A and B input pin
debounce| u8 |0: filter out duration less than 1.95us signal,
_time counter bandwidth less than 512K.
1: filter out duration less than 1us signal (default),
counter bandwidth less than 1M.

2: filter out duration less than 0.5us signal,
counter bandwidth less than 2M.

3: filter out duration less than 0.25us signal,
counter bandwidth less than 4M.

4: filter out duration less than 0.125us signal,
counter bandwidth less than 8M.

5: filter out duration less than 0.1us signal,
counter bandwidth less than 10M.
(only valid for LSI3181A)

6: filter out duration less than 0.0625us signal,
counter bandwidth less than 16M.
(only valid for LSI3181A)

multiple_| u8 |Only valid for quadrature mode, in other mode, this
rate parameter is ignored.

0: MULTIPLE_4 (default)
A,B phase input multiple rate is 4

1: MULTIPLE_2
A,B phase input multiple rate is 2

2: MULTIPLE_1

A,B phase input multiple rate is 1

42

® | SI3181 Cl mode read

Format : u32status = LSI3181_CIl_mode_read (u8 CardID, u8 *in_mode,
u8 *debounce_time, u8 *multiple_rate)
Purpose: To read back the LSI3181 card’s counter input mode.
Parameters:
Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
Output:
Name Type Description
in_mode u8

0: QUADRATURE_MODE

A, B phase quadrature signal at A and B input pin
1:.DUAL_PULSE_MODE

CW and CCW signal at A and B input pin
2:SINGLE_PULSE_MODE

Clock and Direction signal at A and B input pin

debounce_tim
e

ud

0: filter out duration less than 1.95us signal,
counter bandwidth less than 512K.

1: filter out duration less than 1us signal (default),
counter bandwidth less than 1M.

2: filter out duration less than 0.5us signal,
counter bandwidth less than 2M.

3: filter out duration less than 0.25us signal,
counter bandwidth less than 4M.

4: filter out duration less than 0.0125us signal,
counter bandwidth less than 8M.

5: filter out duration less than 0.1us signal,
counter bandwidth less than 10M.
(only valid for LSI3181A)

6: filter out duration less than 0.0625us signal,
counter bandwidth less than 16M.
(only valid for LSI3181A)

multiple_rate

u8

Only valid for quadrature mode, in other mode, this
parameter is ignored.
0: MULTIPLE_4 (default)
A,B phase input multiple rate is 4
1: MULTIPLE_2
A,B phase input multiple rate is 2
2: MULTIPLE_1
A,B phase input multiple rate is 1

43

® | SI3181 CO mode set

Format : u32status = LSI3181 CO_mode_set (u8 CardID, u8 out_mode, u8 gate,
ul6 out_width)

Purpose: To set LSI3181 card’s counter output mode.

Parameters:

Input:

Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
out_mode | u8 |0: NO_TOUT
do not use the CMP_OUT function.
1:.0UT_PULSE
While compare condition meet, the CMP_OUT will be
pulsed at the duration controlled by out_width.
2:0UT_LEVEL
While compare condition meet, the CMP_OUT will be
high.
3:null
4:0UT_TOGGLE
While compare condition meet, the CMP_OUT will be
toggled.

gate u8 |0:NO_GATE
do not use gate function (default)
1.GATED
Use INOO as gate input (polarity is effective), while gate
is inactive, the comparator output will be disabled.
Except for the disable CMP_OUT function, gated mode
do not disable the compare function.

out_width | ul6 |QOutput duration of OUT_PULSE mode.
Duration = 1us * (out_width +1)
If in other output mode, this parameter is trivial.

44

® | SI3181 CO mode read

Format : u32 status = LSI3181_CO_mode_read (u8 CardID, u8 *out_mode, u8 *gate,
ul6 *out width)

Purpose: To read back the LSI3181 card’s counter output mode.

Parameters:

Input:

Name | Type Description
CardID u8 |assigned by DIP/ROTARY SW

Output:

Name | Type Description

out_mode| U8 |0:NO TOUT
do not use the CMP_OUT function.
1:0UT_PULSE
While compare condition meet, the CMP_OUT will be
pulsed at the duration controlled by out_width.
2:0UT_LEVEL
While compare condition meet, the CMP_OUT will be
high.
3:null
4:0UT_TOGGLE
While compare condition meet, the CMP_OUT will be
toggled.
gate u8 |0:NO_GATE
do not use gate function
1.GATED
Use INOO as gate input (polarity is effective), while gate
is inactive, the comparator output will be disabled.
The gated mode do not affect the compare function, it
just block the trigger source of CMP_OUT.
out_width| ul6 |Output duration of OUT_PULSE mode.
Duration = 1us * (out_width +1)
If in other output mode, this parameter is trivial.

45

® | SI3181 toqggle preset

Format : u32 status = LSI13181 toggle preset (u8 CardID, u8 preset)
Purpose: In CMP_OUT toggle mode, preset the CMP_OUT initial state.
Parameters:

Input:

Name | Type Description

CardID u8 |assigned by DIP/ROTARY SW

preset u8 |0: preset the CMP_OUT to logic 0
1: preset the CMP_OUT to logic 1

(before the polarity applied)

® | SI3181 CO read

Format: u32status=LSI3181 CO_read (u8 CardID, u8 *compare_out)
Purpose: To read back the LSI3181 card’s CMP_OUT status.
Parameters:

Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
Output:
Name Type Description
compare_out u8 CMP_OUT status (the status before polarity)

46

10.5 Homing (to clear counter)
At the beginning of an application, the position of encoder / linear scale needs a reference point of
coordinate, use
LSI13181_HOMING_mode_set () to clear counter while the special condition meet after
command to start counter operation.
To check if hardware homing occurred, use
LSI13181 _HOMING_mode_read() to read back homing mode.
To enable homing, you must have the counter in RUN state,
LSI13181 counter_start() (sec. 8.6, to start/stop counter operation)

® | S13181 HOMING mode set
Format: u32 status =LSI3181_HOMING_mode_set (u8 CardID, u8 homing_mode,
ul6 z_count,u8 single_cont)
Purpose: To set LSI3181 card’s homing mode of high speed counter.

Parameters:

Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW

homing_mode| u8 |0: NORMAL (default)
NORMAL is used for counting or compare. While the
homing mode completes, the homing mode will reset to
NORMAL.

1: HOME_ABZ
Clear counter while A,B,Z and HOME signals are MAKE
simultaneously.

1. counter clear at A,B,Z and Home active

Home 4‘
Aphase J 4‘ ‘;
L

B phase ‘ ‘

Z phase,

— —~—
counter clear

47

2: HOME_ABZ_UP
Clear counter at first A,B,Z are MAKE after HOME
signal turned to BREAK and counter up-count.

2. counter clear at first A,B,Z active
after HOME turn to inactive and up count

Home

o
|
]

[

B phase

Z phase

— -~
counter clear

3: HOME_ABZ_DOWN
Clear counter at first A,B,Z are MAKE after HOME
signal turned to BREAK and counter down-count.

3. counter clear at first A,B,Z active
after HOME turn to inactive and down count

Home

j
A phase] ‘
[|

|

B phase

Z phase

—> -~
counter clear

4: HOME_
Clear counter at the tailing edge of HOME input.

4. counter clear at tailing edge of HOME

—

counter clear

Home

5:H_CLEAR_IN
Clear counter while CLEAR_IN input active transition.

5. counter clear at rising edge of CLEAR_IN

CLEAR_IN

counter clear

48

6:HOME_ZN
Clear counter while HOME active to enactive and Z
phase counts z-count pulses.

6. Trailing edge of HOME starts Z phase counter
and count down to "0" clear quadrature counter

HOME
Z counter H H

Z counter =2 =1 =0
=3

counter clear

7:H_ZN
Clear counter while Z phase counts z-count pulses.

7. Z phase counter count down to "0"
clear quadrature counter,

R

Z counter =2 =1 =0

counter clear

z_count ul6 |Z phase count pulses at HOME_ZN and H_ZN homing

mode.

single_cont u8 |0: SINGLE, once counter clears, homing mode reset to
NORMAL.

1: CONT, continuous mode, always doing homing function
while condition meet.

® | SI3181 HOMING mode read

Format : u32status =LS13181 HOMING_mode_read (u8 CardID, u8 *homing_maode,
ul6 *z_count,u8 *single_cont)

Purpose: To read back the LSI3181 card’s high speed counter homing mode.

Parameters:

Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
Output:
Name Type Description
homing_mode | U8 |Refer explanation of LSI13181_ HOMING_mode_set
z_count ule
single_cont u8

49

10.6 Compare function
Compare the counter to a preset value is a useful but special function. In application that needs to
trigger external devices on the fly at specific point, the compare function is a good solution.

irq gate(INOO)
3
counter data on the fly comparator out mode
[
preset data

out_width

compare_mode

compare_mode

trigger_out
pop up data .‘ out_polarity

FIFO Full mask off
fo_ompty. thresh 1024 near empty fifo_status irq segment0_compare
— — segment1_compare —>| gg:_?gl/_
Empty encoder counter data
segment2_compare

fig. 8.1 Compare function block diagram

Use LSI3181_compare_mode_set() to setup the compare mode, there are 3 modes to choose :
single (one-time) compare mode, auto increment compare mode and FIFO compare mode.(refer chap. 7)
You can read back settings by:

LSI13181 compare_mode_read()

If you want to configure the compare output, some functions mentioned in other section but list as
reference.

LSI13181_CIO_polarity_set() (sec 8.4, to set up the CMP_OUT and other counter related
1/0O’s polarity)
LSI13181_CO_mode_set() (sec 8.4, to setup the CMP_OUT mode, pulse width...)

Without using the dedicated function, the combo function to configure CMP_OUT

LS13181 _compare_ CMP_OUT _set()
will do the polarity, operation mode and pulse width setting and read back by
LS13181 _compare_ CMP_OUT read()

To initialize the counter, you can do HOMING function or just preset the counter at certain value. If

you want to override the counter value, use
LSI13181 counter_set() and at any time to read back the on the fly counter value by
LS13181 counter_read().

No matter what mode you use, you must load a value for first comparison, use:

LSI13181 compare_value_set() to load the compare value and read back by.
LSI1310_compare_value_read().

50

If the compare mode you set is single compare mode, now LSI13181 is waiting your start command
to compare.
If your application is to compare at regular distance, auto increment mode is an adequate choice,
use LSI13181 compare_increment_set() to set the incremental distance after each compare equal.
LSI13181 compare_increment_read() to read back auto increment value set.
If your application is not increase at regular distance, using FIFO to program the random position is
the right solution, before using the function
LSI13181 compare_FIFO_clear() resets the FIFO-in and FIFO-out pointer.
For fast comparison application, the FIFO may consume very fast and a pre-empty warning is
required to initialize the FIFO data supply. To set the warning threshold by
LSI13181 compare_FIFO_threshold_set() and read back by
LSI13181 _compare_FIFO_threshold_read().
If you want to scan the FIFO to check how many data remained, using
LSI13181 compare_FIFO_unused_read()
To load the FIFO random position data, use
LSI13181 compare FIFO_set() to save data to the FIFO, the command also can specify the
data length you will fill and the data type is relative or absolute. But in hardware, only relative
distance is stored. (absolute positions are changed to relative data by dll)
After the compare mode, the compare data, the increment vale (in incremental mode) or FIFO (in
FIFO compare mode) have setup already, you can start the counter function by
LSI13181 counter_start(), now counter is counting and the compare logic is waiting to
capture the compare equal event.
If you will check the counter current working mode,
LSI13181 counter_mode_read() will do.
To stop the counter by:
LSI13181_counter_stop().

51

® | SI3181 compare mode set

Format : u32 status = LSI3181 compare_mode_set (u8 CardID, u8 compare_mode)
Purpose: To set LSI3181 card’s compare mode of high speed counter.

Parameters:

Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW

compare_mode| U8 |0: C_SINGLE (Single compare mode, default)

While the compare condition meet, reset the compare

function to compare stop mode.
1: C_FIFO(FIFO compare mode)

While the compare condition meet, load new data from
FIFO until FIFO empty to reset the compare function to
compare stop mode.

2: C_AUTO_INC(Auto increment compare mode)
While the compare condition meet, the new compare
data is incremented by INCREMENT. (set by
LSI3181_compare_increment_set)

Note: To dedicated configure the CMP_OUT polarity, use LS13181_CIO_polarity_set() (sec 8.4)
To dedicated configure the CMP_OUT operating mode and pulse width use:
LSI13181 CO_mode_set() (sec 8.4)

52

® | SI3181 compare mode read

Format : u32 status = LSI3181 _compare_mode_read (u8 CardID, u8 *compare_mode)
Purpose: To read back the LSI3181 card’s compare mode of high speed counter.
Parameters:

Input:

Name Type Description
CardID u8 |assigned by DIP/ROTARY SW

Output:

Name Type Description

compare_mode| U8 |0: C_SINGLE (Single compare mode, default)

While the compare condition meet, reset the compare

function to compare stop mode.
1: C_FIFO(FIFO compare mode)

While the compare condition meet, load new data from
FIFO until FIFO empty to reset the compare function to
compare stop mode.

2: C_AUTO_INC(Auto increment compare mode)
While the compare condition meet, the new compare
data is incremented by INCREMENT.

53

® | SI3181 compare CMP OUT set

Format : u32 status = LSI3181 compare CMP_OUT set (u8 CardID , u8 polarity ,
u8 out_mode , ul6 out_width)
Purpose: To set the CMP_OUT parameter.

Parameters:
Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
polarity ug8 |0: normal

1: invert
out_mode | uyg |0:NO_TOUT
do not use the CMP_OUT function.
1:.0UT_PULSE
While compare condition meet, the CMP_OUT will be
pulsed at the duration controlled by out_width.
2:0UT_LEVEL
While compare condition meet, the CMP_OUT will be
high.
3:null

4:0UT_TOGGLE

While compare condition meet, the CMP_OUT will be
toggled.

out_width | y16 |Output duration of OUT_PULSE mode.
Duration = 1us * (out_width +1)
If in other output mode, this parameter is trivial.

54

® | SI3181 compare CMP OUT read

Format : u32 status = LSI13181 _compare_ CMP_OUT read (u8 CardID , u8 *polarity ,
u8 *out_mode , ul6 *out_width)
Purpose: To read back the CMP_OUT parameter.

Parameters:
Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
Output:
Name Type Description
polarity ug8 |0: normal

1: invert
out_mode | yg |0:NO_TOUT
do not use the CMP_OUT function.
1:.0UT_PULSE
While compare condition meet, the CMP_OUT will be
pulsed at the duration controlled by out_width.
2:0UT_LEVEL
While compare condition meet, the CMP_OUT will be
high.
3:null

4:0UT_TOGGLE

While compare condition meet, the CMP_OUT will be
toggled.

out_width | y16 |Output duration of OUT_PULSE mode.
Duration = 1us * (out_width +1)
If in other output mode, this parameter is trivial.

55

® | SI3181 counter set
Format : u32 status = LSI13181 counter_set (u8 CardID, i32 counter_value)
Purpose: To set value to high speed counter.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
counter_value 132 |+2147483647 ~ -2147483648

Note: If you set the high speed counter, it means you give the counter a basic value, the next
counting will based on this value.

® | SI3181 counter read
Format : u32 status = LSI13181 counter_read (u8 CardID, i32 *counter_value)
Purpose: To read back the on the fly counter.

Parameters:
Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
Output:
Name Type Description
counter_value | 132 |+2147483647 ~ -2147483648, counter value on the fly

® | SI3181 compare value set

Format : u32 status = LSI13181 compare_value_set (u8 CardID, i32 compare_value)
Purpose: To set LSI3181 card’s compare value of high speed counter.

Parameters:

Input:

Name Type Description
CardID us8 assigned by DIP/ROTARY SW

compare_value 132 |+2147483647 ~ -2147483648

Note: One-time (Single) compare mode or auto increment mode or FIFO mode, all need to set up
the first comparison value to start.

56

® | SI3181 compare value read

Format : u32 status = LSI3181 compare_value read (u8 CardID, i32 *compare_value)
Purpose: To read back the LSI3181 card’s compare value to the high speed counter.
Parameters:

Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
Output:
Name Type Description
compare_value i32 |Refer explanation of
LS13181 compare_value_set

Note: This command can use to read the comparison value for both auto increment or FIFO
comparison.

® | SI3181 compare increment set

Format : u32 status = LSI13181 compare_increment_set (u8 CardID, i32 increment_value)
Purpose: To set LSI3181 card’s compare incremental value to high speed counter.
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
increment_value 132 |+ 21474836487~ - 2147483648
Note:

New compare value = current compare value + increment_value,
New compare value will be loaded while current compare condition meet.

® | SI3181 compare increment read

Format : u32 status = LS13181 _compare_increment_read (u8 CardID,

132 * increment_value)
Purpose: To read back the LSI3181 card’s compare incremental value to high speed counter.
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description
increment_value i32 |+ 21474836487~ - 2147483648

57

® | SI3181 compare FIFO clear

Format : u32 status = LSI13181 compare FIFO_clear (u8 CardID)
Purpose: To discard all the data in compare FIFO to high speed counter.
Parameters:

Input:

Name Type Description
CardID u8 assigned by DIP/ROTARY SW

® | SI3181 compare FIFO threshold set

Format : u32 status = LSI13181 compare_FIFO_threshold_set (u8 CardID,
ul6 threshold value)
Purpose: To set LSI3181 card’s compare FIFO threshold value to high speed counter.
While FIFO remain count reach the threshold, it will generate an almost empty event.
Parameters:
Input:

Name Type Description
CardID ug assigned by DIP/ROTARY SW
threshold_value ulé 1~1023

Note: The remained FIFO data number equals the threshold value will generate the
FIFO_AL_EMPTY status.

® | SI3181 compare FIFO threshold read

Format : u32 status = LSI3181_compare_FIFO_threshold_read (u8 CardID,
ul6 *threshold_value)
Purpose: To set LSI3181 card’s compare FIFO threshold value.
While FIFO remain count reach the threshold, it will generate an almost empty event.
Parameters:

Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
Output:
Name Type Description
threshold_value ulé |1~1023

58

® | SI3181 compare FIFO unused read

Format : u32 status = LSI13181 compare FIFO_unused_read (u8 CardID,
ul6 *unused_count)
Purpose: To read back LSI3181 card’s compare FIFO un-used count.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:

Name Type Description

unused_count ule |1~1024

® | SI3181 compare FIFO set
Format : u32 status = LSI13181 compare FIFO_set (u8 CardID, i32 FIFO_data[1024],
u8 rel_abs, ul6 size)
Purpose: To fill LSI3181 card’s compare FIFO.

Parameters:

Input:
Name Type Description
CardID u8 |assigned by DIP/ROTARY SW

FIFO_data | i32 |Pointer of FIFO_data, each data is 32bit integer type
FIFO_data must in the range
+ 21474836487~ - 2147483648

rel_abs u8 |0: RELATIVE, relative coordinate data
1: ABSOLUTE, absolute coordinate data
size Ul |The input FIFO_data size (1~1024)

Note:

1. FIFO_data is a pointer of FIFO_data array with the “size” length.

2. FIFO_data will save to on board hardware FIFO.

3. Before using LS13181 _compare_FIFO_set to fill FIFO, you must already set the first compare
value by LSI3181 compare_value_set as the compare starting point.

59

® | SI3181 counter start

Format : u32 status = LSI3181 counter_start (u8 CardID, u8 mode)
Purpose: To start/stop counter operation mode

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY switch
mode u8 0: COUNTER_STOP

counter stops operation.
1: COUNTER_RUN

start operation of counter (including
HOMING).

2: COUNTER_CMP
start operation of counter with compare
and compare output function.

® | SI3181 counter mode read

Format : u32 status = LSI3181_counter_mode_read (u8 CardID, u8 *mode)
Purpose: To read back counter operation mode.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY switch
Output:
Name Type Description
mode us b3: COMPARE_OUT function
=1,always run
=0, stop
b2: FIFO COMPARE function
=1, always run
=0, stop

bl: SINGLE/INCREMENT COMPARE
function
=1, always run
=0, stop
b0: COUNTER function
=1, always run

=0, stop

60

® | SI3181 counter stop

Format : u32 status = LSI13181 counter_stop (u8 CardID)
Purpose: To stop counter operation mode

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY switch

61

10.7 Compare segment configuration and compare out mask off

irq gate(INOO)
3
counter data on the fly comparator out mode
L=
preset data

out_width

compare_mode

compare_mode

preload

trigger_out
pop up data .‘ out_polarity

FIFO Full mask off

1024 | & irq segment0_compare
near empty fifo_status

interior/

segment1_compare —| :
- exterior

Empty encoder counter data

e

fig. 8.2 GATE and segment compare function

segment2_compare

External GATE function
For some applications, you need to disable the CMP_OUT trigger but do not affect the auto
increment or FIFO operation. You can use external gate mode or the segment mask off function to disable
the trigger output.
To use the external (INOO) as gate control use:
LSI13181 port_polarity_set() (sec. 8.2, to configure the INOO polarity)
LSI13181_CO_mode_set() (sec. 8.4, to enable the gate function)
The GATE function is hardware based function, after you configure it, it is waiting to work.
The combo GATE function provides a more easy way:
LSI13181_compare_GATE_enable() to configure and enable the GATE function.
LSI13181 compare_GATE_disable() to disable the GATE function.
Please refer fig. 7.2 Auto increment compare and compare output mask function, fig. 7.3 FIFO
compare and compare output mask function for GATE control function.

Segment mask off
On the other side, the software provides 3 segments mask off control on card, you can choose any
one of them or use all of them as you want. First configure the one you want to use and set up the start
and stop point coordinate by:
LSI13181 cmp_segment_write() and read back to check by
LSI13181_cmp_segment_read().
Next, configure the mask off applies to the interior or exterior of segments,
LSI13181 mask_off write() and read back by
LS13181 mask_off read()

62

At last enable or disable the function by:
LSI13181 segment_control_write() or read back by:
LS13181 segment _control_read()
After all is configured, the CMP_OUT will be mask off as you need. (Refer sec. 8.6 compare
function, LS13181_compare_ CMP_OUT _set())
Please refer fig. 7.2 Auto increment compare and compare output mask function, fig. 7.3 FIFO
compare and compare output mask function for segment mask off function.

® | SI3181 compare GATE enable

Format : u32 status = LSI3181 compare_GATE_enable (u8 CardID,u8 polarity)
Purpose: To enable GATE function and setup GATE polarity.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
polarity us8 0: normal (INQO only)
1: invert (INOO only)

® | SI3181 compare GATE disable

Format : u32 status = LSI3181_compare_GATE_disable (u8 CardID)
Purpose: To disable GATE function.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW

® | SI3181 cmp segment write

Format : u32 status = LS13181 _cmp_segment_write (u8 CardID,u8 index,i32 start,i32 stop)
Purpose: To write the segment coordinate.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
index u8 0: Segment 0
1: Segment 1
2: Segment 2
start 132 Start point of mask off segment
stop 132 Stop point of mask off segment

63

® | SI3181 cmp segment read

Format : u32 status = LSI3181 _cmp_segment_read (u8 CardID,u8 index,i32 *start,

132 *stop)
Purpose: To read the segment coordinate.
Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
index us8 0: Segment 0
1: Segment 1
2: Segment 2
Output:
Name Type Description
start 132 Start point of mask off segment
stop 132 Stop point of mask off segment

LSI3181 mask off write

Format : u32 status = LSI3181_mask_off write (u8 CardID, u8 attribute)

Purpose: To write the mask off attribute.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
attribute u8 0: mask off interior
1. mask off exterior

Note: The start point and stop point are defined as interior.

® | SI3181 mask off read

Format: u32 status = LS13181 mask_off read (u8 CardID,u8 *attribute)
Purpose: To read back the segment interior or exterior attribute.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
Output:
Name Type Description
attribute u8 0: mask off interior
1: mask off exterior

64

® | SI3181 segment control write

Format : u32 status = LSI3181 segment_control_write (u8 CardID,u8 index, u8 control)
Purpose: To write the segment control.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
index us8 0: Segment 0
1: Segment 1
2: Segment 2
control u8 O:disable
1:enable

® | SI3181 segment control read

Format : u32 status = LSI13181 segment_control_read (u8 CardID,u8 index,u8 *control)
Purpose: To read the segment control.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
index us 0: Segment 0
1: Segment 1
2: Segment 2
Output:
Name Type Description
control u8 0:disable
1:enable

65

10.8 Position offset compare function

Offset 7 compare_74>{ Pulse width_7 ’—»{ Mask_7- CMP7 OUT
—=]

single position
Offset_0 compareio—-{ Pulse width_0 ’—-{ Mask_| CMPO_OUT

Auto-Increment mode B
select

{ s o} -

FIFO compare

current position
counter

out_mode

out_width

>

segment0_compare
segment1_compare

segment2_compare

Fig. 8.3 Block diagram of position offset compare function

Position offset function provides extra merits to compare function, not only the base comparison
position can generate compare equal pulse but also its offset position can generate compare equal pulse
at programmable duration. The offset value can be positive or negative depends on your application but
please note that the acceptable (reasonable) range:

(Previous comparison value + 3) < (Current comparison value + Offset value) and

(Current comparison value + Offset value) < (Next comparison value + 3)
Owing to the compare value is calculated on the fly, out of this range will disturb the compare function.

First of all, you must decide how much the offset is and how many sets of offset you want to use.
Setup the position offset data by:
LSI13181_compare_offset_set() and you can read back to verify by
LSI13181 compare_offset read()

Next step, you must setup the compare output pulse width for each offset you want to use.
LSI13181 _compare_offset_out width_set() and read back by
LS13181_compare_offset_out_width_read()

After all the parameters are set, you can control the function enable/disable by mask off or unmask:
LSI13181 compare_offset_mask_set() and read back by
LS13181_compare_offset mask read()

If you do not use position offset compare output (CMPO_OUT ~CMP7_OUT), another application

is to use them as a general purpose outputs, you can set/reset the port output by:
LSI13181 compare_offset_output_set() and read back by
LS13181_compare_offset_output_read()

You also can control the un-used position offset compare output bit by:
LSI13181 compare_offset_output_point_set() and read back by
LS13181 _compare_offset_output_point_read()

66

Please note that the CMP0_OUT~ CMP7_OUT are differential output, it has 2 outputs in inverse
state, you can choose to use the positive out or negative out to fit your application but the level is only

TTL level.
Please refer fig. 7.5 Position offset compare function with positive offset and positive offset for the

operation of segment mask off function.

® | SI3181 compare offset set

Format : u32 status = LSI13181 compare_offset_set (u8 CardID , u8 channel , i16 offset)
Purpose: To set LSI3181 card’s compare offset data.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
channel us8 0: offset_0
7: offset 7
offset 116 Compare offset data.

Note: Be sure to have the offset data in the range:
(Previous comparison value + 3) < (Current comparison value + Offset data) and
(Current comparison value + Offset data) < (Next comparison value + 3)

® | SI3181 compare offset read

Format : u32 status = LSI3181 compare_offset_read (u8 CardID , u8 channel , i16 *offset)
Purpose: To read back LSI13181 card’s compare offset data.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
channel us8 0: offset_0
7: offset 7
Output:
Name Type Description
offset 116 Compare offset data.

67

® | SI3181 compare offset out width set

Format : u32 status = LSI13181 compare_offset_out width_set (u8 CardID , u8 channel
ul6 out_width)
Purpose: To set LSI3181 card’s compare offset output width.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
channel ud 0: offset_ 0 (CMPO_OUT)
7: offset 7 (CMP7_OUT)
out_width ul6 Duration = 1us * (out_width +1)

® | SI3181 compare offset out width read

Format : u32 status = LSI13181 compare_offset out width_read (u8 CardID , u8 channel ,
ul6 *out width)
Purpose: To read back LSI3181 card’s compare offset output width.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
channel u8 0: offset_ 0 (CMPO_OUT)
7: offset _7 (CMP7_OUT)
Output:
Name Type Description
Out_width ul6 Duration = 1us * (out_width +1)

68

® | SI3181 compare offset mask set

Format : u32 status = LSI13181 compare_offset_mask_set (u8 CardID , u8 mask)
Purpose: To set LSI3181 card’s compare offset mask.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
mask ud bit0: offset_0 mask

=0, mask off (no trigger out at CMP0_OUT)
=1, unmask (trigger out)

bit7: offset_7 mask
=0, mask off (no trigger out at CMP7_OUT)
=1, unmask (trigger out)

® | SI3181 compare offset mask read

Format : u32 status = LSI3181_compare_offset_mask_read (u8 CardID , u8 * mask)
Purpose: To read back LSI3181 card’s compare offset mask.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description
mask us bit0: offset_0 mask

=0, mask off (no trigger out at CMP0_OUT)
=1, unmask (trigger out)

bit7: offset_7 mask
=0, mask off (no trigger out at CMP7_OUT)
=1, unmask (trigger out)

69

® | SI3181 compare offset output set

Format : u32 status = LSI13181 compare_offset_output_set (u8 CardID , u8 data)
Purpose: To set LSI3181 card’s compare offset output.

Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
data us8 bit0: CMPO_OUT

bit7: CMP7_OUT
Note: Use CMP0O_OUT ~ CMP7_OUT as general output or override the compare out.

® | SI3181 compare offset output read

Format : u32 status = LSI13181 compare_offset output_read (u8 CardID , u8 *data)
Purpose: To read back LSI3181 card’s compare offset output.

Parameters:
Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

Output:

Name Type Description

data u8 bit0: CMPO_OUT

bit7: CMP7_OUT

® | SI3181 compare offset output point set

Format : u32 status = LS13181_compare_offset_output_point_set (u8 CardID , u8 point,

u8 state)
Purpose: To set LSI3181 card’s compare offset output.
Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
point ud 0: CMP0_OUT
7: CMP70_OUT
state u8 output state

Note: Use CMP0O_OUT ~ CMP7_OUT as general output or override the compare out.

70

® | SI3181 compare offset output point read

Format : u32 status = LSI13181 compare_offset_output_point_read (u8 CardID , u8 point,

u8 *state)
Purpose: To read back LSI3181 card’s compare offset output.
Parameters:
Input:
Name Type Description
CardID us8 assigned by DIP/ROTARY SW
point ud 0: CMP0_OUT
7: CMP70_OUT
Output:
Name Type Description
state u8 output state

71

10.9 Interrupt function
There are 3 interrupt sources for your quick response application,
1. Digital input: INOO~INOQ7 generate interrupt
2. Timer: time up interrupt
3. Counter: compare equal, FIFO empty, FIFO full and FIFO near empty can generate interrupt.

To use the interrupt service, the first step
LSI13181_IRQ_mask_set () to mask off the undesired interrupt source.
LS13181 IRQ _mask_read() to read back the mask.

After the mask set, you can link your service routine to interrupt by:
LSI13181 IRQ_process_link(), then enable or disable by:
LSI13181 IRQ_enable() to enable, or
LSI13181 IRQ _disable() to disable the function.

If you want to check the interrupt status to identify which is the interrupt source,
LSI13181 IRQ status_read() will do and it also clears the interrupt status.

LSI3181 IRO mask set

Format : u32 status = LSI3181 IRQ_mask_set (u8 CardID,u8 source, u8 mask)
Purpose: Mask off interrupt source of port0 INO7~INOO or timer,counter
Parameters:

Input:
Name Type Description
CardID u8 assigned by Rotary SW
source u8 0: digital io block
1: timer /counter block
mask us Digital block:

Any bit set to 1 of b7~b0 means INO7~INOO can
generate interrupt

Timer /Counter block:

b4=1, enable timer cross zero to generate interrupt,
else disable.

b3=1, enable counter compare condition meet
(CMP_QOUT) to generate interrupt else disable.

b2=1, enable compare FIFO empty to generate
interrupt else disable.

bl=1, enable compare FIFO full to generate
interrupt else disable.

b0=1, enable compare FIFO threshold condition
meet (FIFO_AL_EMPTY) to generate interrupt
else disable.

72

® [SI3181 IRO mask read

Format : u32 status = LSI3181 IRQ_mask read (u8 CardID,u8 source,u8 *mask)
Purpose: read back interrupt mask of port0 b7~b0 or timer/counter
Parameters:

Input:
Name Type Description
CardID ug assigned by Rotary SW
source u8 0: digital io block
1: timer/counter block
Output:
Name Type Description
mask us Digital block:

Any bit set to 1 of b7~b0 means INO7~INOO
can generate interrupt

Timer /Counter block:
b4=1, enable timer cross zero to generate
interrupt, else disable.

b3=1, enable counter compare condition
meet to generate interrupt else disable.

b2=1, enable compare FIFO empty to
generate interrupt else disable.

b1=1, enable compare FIFO full to generate
interrupt else disable.

b0=1, enable compare FIFO threshold
condition meet to generate interrupt else
disable.

® | SI3181 IRQ process link

Format : u32 status = LSI3181_IRQ_process_link (u8 CardID,
void (__stdcall *callbackAddr)(u8 CardID))
Purpose: Link irq service routine to driver

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
callbackAddr void callback address of service
routine

73

® | SI3181 IRQ enable

Format : u32 status = LSI3181 IRQ enable (u8 CardID, HANDLE *phEvent)
Purpose: Enable interrupt from selected source

Parameters:
Input:
Name Type Description
CardID ug assigned by Rotary SW
Output:
Name Type Description
phEvent HANDLE event handle

® | SI3181 IRO disable

Format : u32status =LSI3181 IRQ _disable (u8 CardID)
Purpose: Disable interrupt from selected source
Parameters:

Input:

Name Type Description
CardID u8 assigned by Rotary SW

74

® | SI3181 IRQ status read

Format : u32 status = LSI3181 IRQ status_read (u8 CardID,u8 source, u8 *Event_Status)
Purpose: To read back the interrupt status to identify the source

Parameters:
Input:

Name Type Description

CardID u8 assigned by Rotary SW

source ug 0: digital 1o block

1: timer block

Output:

Name Type Description

Event_Status | u8 |Digital block:
Any bit set to 1 of b7~b0 means port0 INO7~INOO generate

interrupt

Timer /counter block:
b4:S_TIMER

Timer cross 0 will set S TIMER flag
b3:S_COMPARE

Compare condition meet will set S COMPARE flag
b2:S_FIFO_EMPTY

FIFO unused count=0 will set S_FIFO_EMPTY flag
bl:S FIFO_FULL

FIFO count = 1023 will set S_FIFO_FULL flag
b0:S_FIFO_AL_EMPTY

FIFO unused count = FIFO_THRESHOLD will set

S_FIFO_AL_EMPTY flag

Note:

1. Status read back will also clear the on board status register.

2. The status will reflect the on board digital input or timer count up status are irrelevant to the
IRQ_MASK

75

10.10 Security function

From the dll version 2.0 and later, we remove the software key function owing to some
customers complained about the card locked on some unknown occasion. We only remain the
functions to comply with the existing programs but the returned value always true.

Since LSI13181 is a general purpose card, anyone who can buy from the market. Your program is
the fruit of your intelligence, un-authorized copy maybe prevent by the security function enabled.
You can use

LSI13181_ password_set() to set password and start the security function.
LSI13181 password_set_default() set all password is “0”.
LSI13181 password_change() to change it.

If you don’t want to use security function after the password being setup,
LSI13181 password_clear() will reset to the virgin state.

Once the password is set, any function call of the dll’s (except for the security functions) will be

blocked until the
LSI13181 security_unlock() unlock the security.
You can also use
LSI3181 security_status_read() to check the current status of security.

We suggest that if you want to use the security function in your application, you can program the
security code with the demo program (come with the product) and try to unlock to confirm the
mechanism. In the application program, just unlock the security to run your application.

Note:
Any attempt to unlock the software security function with wrong passwords more than 10 times
will “dead lock” the card.

® | SI3181 password set

Format : u32 status = LSI3181 password_set (u8 CardID,ul6 password[5])
Purpose: To set password and if the password is not all <“0”, security function will be enabled.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
password[5] ulé Password, 5 words

Note: If the password is all ““0”, the security function is disabled.

® | SI3181 password set default

Format : u32 status = LSI13181 password_set_default (u8 CardID)
Purpose: Set all password is “0”.

Parameters:

Input:

Name Type Description
CardID u8 assigned by DIP/ROTARY SW
76

® | SI3181 password change

Format : u32 status = LSI13181 password_change (u8 CardID,ul6 Oldpassword[5],
ul6 password[5])
Purpose: To replace old password with new password.

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
Oldpassword [5] ulé The previous password
password[5] ulé The new password to be set

® | SI3181 password clear

Format : u32 status = LSI3181 password_clear (u8 CardID,ul6 password[5])
Purpose: To clear password, to set password to all <07, i.e. disable security function.
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
password[5] ulé The password previous set

® | SI3181 security unlock

Format : u32 status = LSI3181 security_unlock (u8 CardID,ul6 password[5])
Purpose: To unlock security function and enable the further operation of this card
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
password[5] ulé The password previous set

77

® | SI3181 security status read

Format : u32 status = LSI3181 security_status_read (u8 CardID,u8 *lock_status,
u8 *security_enable)

Purpose: To read security status for checking if the card security function is unlocked.

Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description
lock_status us8 0: UNLOCKED
security unlocked
1: LOCKED
security locked
2: DEAD LOCK
dead lock (must return to original
maker to unlock)
security us8 0: security function disabled
enable 1: security function enabled

78

11. DIl list

Function Name Description
1. |LSI3181 initial() LSI3181 initial
2. |LSI3181_close() LSI3181 close
3. |LSI3181 _info() Read the 1/0 address of the specific card
4. |LSI3181_port_polarity_set () Set Input/output port polarity
5. |LSI3181_port_polarity read () Read back the Input/output port polarity
6. |LSI3181_debounce_time_set () Set input port digital debounce time
7. |LSI3181 debounce_time_read () Read back input port digital debounce time
8. |LSI3181 port_set () Output data to digital output
0. |LSI3181 port_read () Read back the input or output port
10. |LSI3181 point_set () point output to digital output
11. |LSI3181 point read () point read back of digital input or output
12. |LSI3181 timer_set () Setup or update timer
13. |LSI3181 timer_start () Start timer operation
14. |LSI3181 timer_stop () Stop timer operation
15. |LSI3181 TC set () Set TC registers
16. |LSI3181 TC read () Read TC registers
17. |LSI3181 CIO_polarity set () Setup counter specific 1/0 polarity
18. [LSI3181 CIO_polarity read () Read back counter specific I/0 polarity
19. |LSI3181 CIO_read() Read the current status of counter specific 1/0
20. |LSI3181_CIl_mode_set() Counter input mode setup
21. |LSI3181 CIl_mode_read() Read back counter input mode
22. |LSI3181 CO_mode_set() Counter output mode setup
23. |LSI3181_CO_mode _read() Read back counter output mode

In CMP_OUT toggle mode, preset the CMP_OUT
24. |LSI3181_toggle preset() L
initial state.

25. |LSI3181_CO _read() Read back the LSI3181 card’s CMP_OUT status
26. |LSI3181_HOMING_mode_set() Setup Homing mode
27. LSI13181_HOMING_mode_read() Read back homing mode
28. |LSI3181 _compare_mode_set() Setup compare mode
29. |LSI3181 _compare_mode_read() Read back compare mode
30. |LSI3181 _compare_ CMP_OUT set() To set the CMP_QOUT parameter
31. [LSI3181 compare_ CMP_OUT read() To read back the CMP_QUT parameter.
32. |LSI3181_counter_set() Set counter value
33. |LSI3181 counter_read() Read back counter on the fly

79

34.

LSI3181 _compare_value_set()

Setup compare value

35.

LSI3181 compare_value_read()

Read back compare value

36. |LSI3181 compare_increment_set() Setup auto increment value

37. |LSI3181_compare_increment_read() Read back auto increment value
38. |LSI3181_compare_FIFO_clear() Clear FIFO

39. |LSI3181 _compare_FIFO_threshold_set() Setup FIFO near empty threshold

40.

LSI3181 compare_FIFQO_threshold_read()

Read back FIFO near empty threshold

41.

LSI3181 _compare_FIFO_unused_read()

Read back the remained FIFO size

42.

LSI3181 _compare_FIFO_set()

Setup FIFO data

43.

LSI3181 counter_start()

Start counter function

44.

LSI3181 counter_mode_read()

Read back counter working mode

45.

LS13181 counter_stop()

Stop counter function

46.

LSI3181 compare_GATE_enable()

Enable GATE function and setup GATE polarity

A7,

LSI3181 compare_ GATE_disable()

Disable GATE function

48.

LSI3181 cmp_segment_write ()

Write the segment coordinate

49.

LSI3181 cmp_segment read ()

Read the segment coordinate

S0.

LSI3181 _mask_off write ()

\Write the mask off attribute

51,

LSI3181 mask_off read ()

Read the mask off attribute

52.

LSI3181 segment_control_write()

Write the segment control

53.

LSI3181 segment_control_read()

Read the segment control

54,

LSI3181 compare_offset_set()

Set LSI3181 card’s compare offset data

55.

LSI13181 compare_offset_read()

Read back LS13181 card’s compare offset data

56.

LSI3181 compare_offset_out width_set()

Set LSI3181 card’s compare offset output width

o7,

LSI3181 compare_offset out_width_read()

Read back LS13181 card’s compare offset output
width

58.

LSI3181 compare_offset_mask_set()

Set LSI3181 card’s compare offset mask

59.

LSI13181 compare_offset_mask_read()

Read back LSI3181 card’s compare offset mask

60.

LSI13181 compare_offset_output_set()

Set LSI3181 card’s compare offset output

61.

LSI3181 compare_offset_output_read()

Read back LSI3181 card’s compare offset output

62.

LSI3181 compare_offset_output_point_set()

Set LSI3181 card’s compare offset output

63. |LSI3181 compare_offset_output_point_read() [Read back LSI3181 card’s compare offset output.
64. |LSI3181 IRQ_mask set () Setup interrupt source mask
65. [LSI3181 IRQ _mask read () Read back interrupt source mask

66.

LSI13181 IRQ_process_link ()

Link interrupt service routine to driver

67.

LSI13181 IRQ enable ()

Enable interrupt function

68.

LS13181 IRQ disable ()

Disable interrupt function

69.

LSI13181 IRQ status_read()

Read back irq status

70.

LSI13181 password_set ()

Set software key

71.

LSI3181 password_set_default()

Set all password is “0”

80

72.

LSI3181 password_change ()

Change software key

73.

LS13181_password_clear ()

Clear software key

74,

LSI3181 security_unlock ()

Unlock software key

/5.

LSI3181 security_status_read ()

Read software key status

81

12. LS13181 Error codes summary

12.1 LSI3181 Error codes table

g)r&r Symbolic Name Description
0 |DRV_NO_ERROR No error.
2 |DRV_INIT_ERROR Initial error
3 |DRV_UNLOCK_ERROR Security unclock failure
4 |DRV_LOCK_COUNTER_ERROR Dead lock, unclock failure more than 10 times
5 |DRV_SET_SECURITY_ERROR Password overwrite error
100 |[DEVICE_IO_ERROR Device drive error
101 |DRV_NO_CARD No card find error
102 |DRV_DUPLICATE_ID Card duplicate error
300 |LSI_ID_ERROR CardID setting error, CardID doesn’t match the DIP
SW setting
301 |LSI_COUNTER_MODE_ERROR LSI3181 set _counter_mode(),"mode" parameter out
of range.
302 |LSI_TIMER_CONSTANT_ERROR LSI3181 timer_set(),"time" parameter out of range.
303 |LSI_CI_MODE_ERROR LSI3181 CIl_mode_set(),"control™ parameter out of
range.
304 |LSI MULTIPLE_RATE _ERROR LSI3181 _CIl_mode_set (),"mode" parameter out of
range.
305 |LSI_POINT_ERROR "point"” parameter out of range.
306 |LSI CO ERROR LSI3181 CO_mode_set (),"mode" parameter out of
range.
307 |LSI_ HOME_MODE_ERROR LSI3181 HOMING_mode_set(),"mode" parameter
out of range.
308 |LSI_ COMPARE_MODE_ERROR LSI3181 compare_mode_set(),"mode™ parameter
out of range.
309 |LSI_POLARITY_ERROR "polarity” parameter out of range.
310 |LSI_INCREMENT_ERROR LSI3181 compare_increment_set (),"control"
parameter out of range.
311 |LSI_COMPARE_OUT_MODE_ERRO |LSI3181_CO_mode_set (),"control" parameter out
R of range.
312 |LSI_FIFO_FULL_ERROR push into new data while FIFO full
313 |LSI_FIFO_EMPTY_ERROR pop out data while FIFO empty
314 |LSI_FIFO_ERROR LSI3181 compare FIFO_set (),"control" parameter
out of range.
315 |LSI_THRESHOLD_ERROR LSI3181 compare_FIFO_threshold_set (),"control”
parameter out of range.

82

316 |LSI_COUNTER_ERROR LSI3181 counter_start (),"control” parameter out of
range.

317 |LSI_IRQ_MASK_ERROR LSI3181 IRQ_mask_set (),"control” parameter out
of range.

400 |LSI_DRIVER_NOT_SUPPORT driver not support interrupt function

500 [PORT_ERROR Function input parameter error.
Parameter out of range.

501 |[DEBOUNCE_MODE_ERROR LSI3181 debounce (),"control" parameter out of
range.

502 |INDEX_ERROR TC register index error

503 |SOURCE_ERROR IRQ source parameter out of range.

83

	Correction record
	Contents
	1. How to install the software of LSI3181
	1.1 Install the PCI driver

	2. Where to find the file you need
	3. About the LSI3181 software
	3.1 What you need to get started
	3.2 Software programming choices

	4. LSI3181 Language support
	4.1 Building applications with the LSI3181 software library
	4.2 LSI3181 Windows Libraries

	5. Basic concepts of digital I/O control
	5.1 Types of I/O classified by isolation
	5.2 Types of Output classified by driver device
	5.3 Input debounce
	5.4 Input interrupt
	5.5 Read back of Output status

	6. Basic concepts of quadrature encoder counter
	6.1 Input debounce time
	6.2 Input polarity
	6.3 Signal input type
	6.4 Homing (counter clear mode)

	7. Basic concepts of counter compare function
	7.1 Counter compare mode
	7.2 Trigger output width
	7.3 Segment mask off and external gate function
	7.4 Position offset compare function

	8. Function format and language difference
	8.1 Variable data types
	8.2 Programming language considerations

	9. Flow chart of application implementation
	9.1 LSI3181 Flow chart of application implementation

	10. Software overview and dll function
	10.1 Initialization and close
	LSI3181_initial
	LSI3181_close
	LSI3181_info

	10.2 Input/Output function
	LSI3181_port_polarity_set
	LSI3181_port_polarity_read
	LSI3181_debounce_time_set
	LSI3181_debounce_time_read
	LSI3181_port_set
	LSI3181_port_read
	LSI3181_point_set
	LSI3181_point_read

	10.3 Timer function
	LSI3181_timer_set
	LSI3181_timer_start
	LSI3181_timer_stop
	LSI3181_TC_set
	LSI3181_TC_read

	10.4 Quadrature counter function
	LSI3181_CIO_polarity_set
	LSI3181_CIO_polarity_read
	LSI3181_CIO_read
	LSI3181_CI_mode_set
	LSI3181_CI_mode_read
	LSI3181_CO_mode_set
	LSI3181_CO_mode_read
	LSI3181_toggle_preset
	LSI3181_CO_read

	10.5 Homing (to clear counter)
	LSI3181_HOMING_mode_set
	LSI3181_HOMING_mode_read

	10.6 Compare function
	LSI3181_compare_mode_set
	LSI3181_compare_mode_read
	LSI3181_compare_CMP_OUT_set
	LSI3181_compare_CMP_OUT_read
	LSI3181_counter_set
	LSI3181_counter_read
	LSI3181_compare_value_set
	LSI3181_compare_value_read
	LSI3181_compare_increment_set
	LSI3181_compare_increment_read
	LSI3181_compare_FIFO_clear
	LSI3181_compare_FIFO_threshold_set
	LSI3181_compare_FIFO_threshold_read
	LSI3181_compare_FIFO_unused_read
	LSI3181_compare_FIFO_set
	LSI3181_counter_start
	LSI3181_counter_mode_read
	LSI3181_counter_stop

	10.7 Compare segment configuration and compare out mask off
	LSI3181_compare_GATE_enable
	LSI3181_compare_GATE_disable
	LSI3181_cmp_segment_write
	LSI3181_cmp_segment_read
	LSI3181_mask_off_write
	LSI3181_mask_off_read
	LSI3181_segment_control_write
	LSI3181_segment_control_read

	10.8 Position offset compare function
	LSI3181_compare_offset_set
	LSI3181_compare_offset_read
	LSI3181_compare_offset_out_width_set
	LSI3181_compare_offset_out_width_read
	LSI3181_compare_offset_mask_set
	LSI3181_compare_offset_mask_read
	LSI3181_compare_offset_output_set
	LSI3181_compare_offset_output_read
	LSI3181_compare_offset_output_point_set
	LSI3181_compare_offset_output_point_read

	10.9 Interrupt function
	LSI3181_IRQ_mask_set
	LSI3181_IRQ_mask_read
	LSI3181_IRQ_process_link
	LSI3181_IRQ_enable
	LSI3181_IRQ_disable
	LSI3181_IRQ_status_read

	10.10 Security function
	LSI3181_password_set
	LSI3181_password_set_default
	LSI3181_password_change
	LSI3181_password_clear
	LSI3181_security_unlock
	LSI3181_security_status_read

	11. Dll list
	12. LSI3181 Error codes summary
	12.1 LSI3181 Error codes table

