AlO3315/A103315A

Analog I/0 Card

Software Manual (V1.1)

ERPHEGF ARF
JS AUTOMATION CORP.

Frat® o7k % ¢ 2R 100 5L 6
6F., N0.100, Zhongxing Rd.,
Xizhi Dist., New Taipei City, Taiwan
TEL : +886-2-2647-6936
FAX : +886-2-2647-6940
http://www.automation.com.tw
http://www.automation-js.com/
E-mail : control.cards@automation.com.tw

http://www.automation.com.tw/
http://www.automation-js.com/
mailto:control.cards@automation.com.tw

Correction record

Manual Record

\ersion
1.0 Driver version - wdf3315.sys V1.0, Al03315.dll V1.0
1.1 Driver version - wdf3315.sys V2.0, AI03315.d1l V2.0

Add Al03315 AD all read()

Contents

How to install the software 0f ATO33L5cooiiiiiiie e 4
1.1 INSEAI TN PO OIVET ...eiiiieieieee e bbbttt bbb 4
Where to find the file YOU NEEA...........ooui i 5
ADOUL the ATO33L5 SOTIWAIEc.veviiiiiiiieieie ettt bbb 6
3.1 What you need t0 get Started...........ccuevieiiiiie et 6
3.2 Software programming CHOICEScciviiiiieii et ns 6
ATO3315 LaNQUAGE SUPPOIT.....eiiieieiiiieiiiie sttt ettt e st e st e st e e st e e ssbe e e ssbe e e ssb e e ssbe e e nsbeeessbeesnsbeeensneas 7
4.1 Building applications with the AIO3315 software library..........ccccooevvevieviiiicve e 7
4.2 AIO3315 WINAOWS HDIAIIES ..ottt et 7
Basic concepts of analog 1/0O CONIOLccviii i 8
Basic concepts of digital 1/0 CONIOL...........ccviiieieci e e 9
SOTEWAIE OVEIVIBW ...ttt bbbttt bbb b e et e bbb be et e beanes 12
7.1 INitialization @Nd CIOSEc.oiiiiiiiicce bbb 12
7.2 DA (Digital to analog) fUNCLIONccueiiiiicc e 12
7.3 AD (Analog to digital) FUNCHION.........cceiieiiccce e 12
T4 1O POFE R/ ..o ettt bbbttt e bbbt b reenes 12
7.5 TIMEE TUNCLION .eviitiiieiee et bbb e bbbttt e reenes 13
7.6 INEErTUPL FUNCLION ..ottt e et e e sre e 13
A A =1 (0T o] o [o] SRRSO 14
Flow chart of application implementationccccovieiiiii e e 15
8.1 AI03315 Flow chart of application implementation...............ccccceeveiieve i 15
FUNCLION FEIRIEINCE. ... et bbbttt sttt e benreene e 16
9.1 FUNCHION FOMMAL.....cviiiieieie e bbbt et bbb beereenes 16
0.2 Variable Gata LYPESecieieieiie ettt ettt et be e re et re et et eer e are e 17
9.3 Programming language CONSIAEIALIONSc.ccveiieeiieiiciie et 18
9.4 AIO3B3LE5 FUNCLIONS.euviteiieiteite ettt sttt s e e et et nbesbeebeeneenes 20
INILIAlIZALION AN CIOSEot b e 20

N [23 3 T 1411 T | SRS 20

N [10 i T o [0SR 20

N [26 1 T 1 (TSRS 20

[= I 11 SRR 21
ATOB3L5 DA _SEL ..ottt 21

F N (@1 i LT B 7 N 1= Lo OSSR 21

AD BLOCK ...ttt bttt ettt bbb re Rttt renreereenes 22
AlO3315 AD_CONTIG_SBL ...vieiieiiiieii ettt esreeeesneenes 22
AlO3315 AD_CONFIG AUicie ettt sae e e sreenns 23
ATO3315_AD _FANGE_SBL.....eiiiiiiiiiie ittt 24
AlO3315 AD_range FBAUeccueiieerieeiesteesieete st e e e e e e e te e sreestaeaesreesreeeesneenes 25
ATO3B3L5_AD _STAM ...ttt sttt e e bbb 25

ATO3B3L5_AD_TAUceueiiiie ettt sttt bt b e b sbe et ne e nreebeene e 26

AIO3315_AD_aAll_FBAG ... it e 27
[/O POIT R/ L.ttt ettt ettt e bbb ene s 28
F N @2 KR oTo oo) 1 o =] SRRSO 28
AIO3315_pOort_CONTIG_ AU ...c.veivieiiieiieie ettt 28
AIO3315_debOUNCE_tIME_SEL.......ciieieieieciieieee et et 29
AIO3315_debounce_tiMe_readccooueiieiiiiesie e 29
ATO3B3LE POIT_SBL.. ettt ettt ettt sb et te e nee e 30

F N L@ 23 KT o To g A =T Lo USRS 30

F N L@ 233 T o Lo Lo | A= SO SR 31

F N L@ 233 KT o To Lo | A =T (o FO USROS 31
TIMEE FUNCHION <ottt bbb renneas 32
F N L@ 1 3 T 100 1=T = PSSR 32

F N L@ 13 ST 100 T=T G =7 T OSSR 32

F N L@ 13 ST 101 1=T G - SR 32

F N L@ 13N ST 101 1=T G (o] o PSSR 33

F N [12 1 T O =) SRS 33

F N (@1 13 T O (- Vo OSSR 33
INEEITUPT TUNCLION ...ttt nte e sre e e 34
AIO3315 IRQ_POIAIILY SBL...cueiiieiiieiieie sttt sae e sreenee e e 34
AlO3315 IRQ_POIAMILY FEAU ...c.eeiveeiieiiesiesie ettt sre e sneeneas 34
AlO3315 TRQ_MASK _SBL.....eeiiieiiiiieiieeiesiesieeiesee e e e ste et et e e ee s e sreeneeeseesseeneeaneenns 35
AlO3315 TRQ_MASK A ...cvveveeiieeiieriesieerie et seesie e te et ste e e e sreeeesreenneeneenneenes 36
AlO3315 TRQ_ProCesS_NK......c.oiieiiiieiieiree et 37
AlO3315 TRQ _ENADIE ... 37
AlO3315 TRQ _AISADIE ..ot nns 37
AlO3315 TRQ _SAtUS AUeceiiieeeieiesieerieeieseesie e ee s te et e e see e sreeneesreesreeeesneeneas 38
TS T 1 I 1S OSSPSR 39
10. AIO3315 Error COUES TADIEc..oiiieiieiieesee ettt 40

1. How to install the software of AlI03315

1.1 Install the PCI driver
The PCI card is a plug and play card, once you add on a new card, the window system will detect

while it is booting. Please follow the following steps to install your new card.

In Win2K/XP/7 and up system you should: (take Win XP as example)

1. Make sure the power is off

2. Plug in the interface card

3. Power on

4. A hardware install wizard will appear and tell you it finds a new PCI card

5. Do not response to the wizard, just Install the file
(..\A103315_A\Software\Win2K _up\ or if you download from website please execute the file
AIO3315_Install.exe to get the file)

6. After installation, power off

7. Power on, it’s ready to use
Note: A103315, AIO3315A use the same driver and dll.

For more detail of step by step installation guide, please refer the file “installation.pdf * on the CD
come with the product or register as a member of our user’s club at:
http://automation.com.tw/
to download the complementary documents.

http://automation.com.tw/

2. Where to find the file you need

Win2K/XP/7 and up
The directory will be located at
..\ JS Automation \AIO3315\API\ (header files and lib files for VB,VC,BCB,C#)
..\ JS Automation \A103315\Driver\ (backup copy of AIO3315 drivers)
..\ JS Automation \A103315\exe\ (demo program and source code)
The system driver is located at ..\system32\Drivers and the DLL is located at ..\system.

For your easy startup, the demo program with source code demonstrates the card functions and help
file.

3. About the A103315 software

AIO3315 software includes a set of dynamic link library (DLL) and system driver that you can
utilize to control the I/O card’s ports and points separately.

Your A103315 software package includes setup driver, tutorial example and test program that help you

how to setup and run appropriately, as well as an executable file which you can use to test each of the
AlIO3315 functions within Windows’ operation system environment.

3.1 What you need to get started
To set up and use your A103315 software, you need the following:
= AJO3315 software
= AIO3315 hardware
Main board
Wiring board (Option)

3.2 Software programming choices

You have several options to choose from when you are programming AIO3315 software. You can
use Borland C/C++, Microsoft Visual C/C++, Microsoft Visual Basic, or any other Windows-based
compiler that can call into Windows dynamic link libraries (DLLs) for use with the AIO3315 software.

4. AlO3315 Language support

The A103315 software library is a DLL used with Win2K/XP/7 and up. You can use these DLL
with any Windows integrating development environment that can call Windows DLLs.

4.1 Building applications with the AIO3315 software library
The AIO3315 function reference topic contains general information about building AI03315

applications, describes the nature of the A103315 files used in building AI03315 applications, and
explains the basics of making applications using the following tools:

Applications tools

B Microsoft Visual C/C++
Borland C/C++
Microsoft Visual C#
Microsoft Visual Basic
Microsoft VVB.net

If you are not using one of the tools listed, consult your development tool reference manual for
details on creating applications that call DLLs.

4.2 AlO3315 Windows libraries

The AIO3315 for Windows function library is a DLL called A103315.dll. Since a DLL is used,
AIO3315 functions are not linked into the executable files of applications. Only the information about
the A103315 functions in the AIO3315 import libraries is stored in the executable files.
Import libraries contain information about their DLL-exported functions. They indicate the presence and
location of the DLL routines. Depending on the development tools you are using, you can make your
compiler and linker aware of the DLL functions through import libraries or through function
declarations.

Refer to Table 1 to determine to which files you need to link and which to include in your
development to use the A103315 functions in A103315.dll.

Header Files and Import Libraries for Different Development Environments
Language Header File Import Library

Microsoft Visual C/C++ AlO3315.h AIO3315VC.lib

Borland C/C++ AlO3315.h AIO3315BC.lib

Microsoft Visual C# AIlO3315.cs

Microsoft Visual Basic AIlO3315.bas

Microsoft VB.net AlO3315.vb

Table 1

5. Basic concepts of analog 1/O control

Analog input is used for quantizing the real world signals to digital value and analog output is vice
versa for converting digital values to real world analog values.

Types of analog input

We can classify the input by type as: current type, voltage type. But you can easily convert the
current to voltage by insert a resistor. Generally, voltage type analog input can satisfy most applications.

On the other hand, the input type can also classify by the detection method. Single end input detects
the input voltage by reference to a common point and differential input detects input voltage to the
difference of the input.

AD

Digital value
converter g

—

Analog ——
input

Single end type

AD
Anaog _— converter

Digital value
—

Differential type

From the above diagram, you can see the differential type must have a common connection
between measured signal and the AD converter. The under measure voltage is riding on a common
voltage Vc. The AIO3315 card can measure the analog voltage without damage at V¢ under —10V ~
+10V. Out of this common voltage range, the conversion maybe error or the on board chip will be
damaged.

The AIO3315 has 12 bit resolution and can accept 0 ~ 5V, 0 ~ 10V, -5V ~ +5V and —-10V ~ +10V
range. The adjacent channel can be programmed as differential or leave it as single end input.

Types of analog output

There are current type and voltage type in general. Current type mostly use 0~20mA or 4~20mA for
remote analog signal transmission. Voltage type is the major on the market.
AIO3315 provide voltage type output and 12 bit resolution maps to —10V ~ +10V range.

6. Basic concepts of digital 1/O control

The digital 1/0 control is the most common type of PC based application. For example, on the main
board, printer port is the TTL level digital 1/0.

Types of 1/O classified by isolation

If the system and 1/O are not electrically connected, we call it is isolated. There are many kinds of
isolation: by transformer, by photo-coupler, by magnetic coupler,... Any kind of device, they can brake
the electrical connection without braking the signal is suitable for the purpose.

Currently, photo-coupler isolation is the most popular selection, isolation voltage up to 2000V or
over is common. But the photo-coupler is limited by the response time, the high frequency type cost a
lot. The new selection is magnetic coupler, it is design to focus on high speed application.

The merit of isolation is to avoid the noise from outside world to enter the PC system, if the noise

comes into PC system without elimination, the system maybe get “crazy” by the noise disturbance. Of
course the isolation also limits the versatile of programming as input or output at the same pin as the
TTL does. The inter-connection of add-on card and wiring board maybe extend to several meters
without any problem.

The non-isolated type is generally the TTL level input/output. The ground and power source of the
input/output port come from the system. Generally you can program as input or output at the same pin as
you wish. The connection of wiring board and the add-on board is limited to 50cm or shorter
(depends on the environmental noise condition).

Types of Output calssified by driver device

There are several devices used as output driver, the relay, transistor or MOS FET, SCR and SSR.
Relay is electric- mechanical device, it life time is about 1,000,000 times of switching. But on the other
hand it has many selections such as high voltage or high current. It can also be used to switch DC load
or AC load.

Transistor and MOS FET are basically semi-permanent devices. If you have selected the right
ratings, it can work without switching life limit. But the transistor or MOS FET can only work in DC
load condition.

The transistor or MOS FET also have another option is source or sink. For PMOS or PNP transistor
is source type device, the load is one terminal connects to output and another connects to common
ground, but NPN or NMOS is one terminal connects to output and the other connects to VCC+. If you
are concerned about hazard from high DC voltage while the load is floating, please choose the
source type driver device.

SCR (or triac) is seldom direct connect to digital output, but his relative SSR is the most often
selection. In fact, SSR is a compact package of trigger circuit and triac. You can choose zero cross
trigger (output command only turn on the output at power phase near zero to eliminate surge) or direct
turn on type. SSR is working in AC load condition.

Input debounce

Debounce is the function to filter the input jitters. From the microscope view of a switch input, you
will see the contact does not come to close or release to open clearly. In most cases, it will
contact-release-contact-release... for many times then go to steady state (ON or OFF). If you do not
have the debounce function, you will read the input at high state and then next read will get low state,
this maybe an error data for your decision of contact input.

Debounce can be implemented by hardware or software. Analog hardware debounce circuit will
have fixed time constant to filter out the significant input signal, if you want to change the response time,
the only way is to change the circuit device.

If digital debounce is implemented, maybe several filter frequency you can choose. To choose the

filter frequency, please keep the Nyquist-Shannon sampling theorem in mind: filter sample frequency
must at least twice of the input frequency. The following sample is a bad selection of debounce filter, the
input frequency is not as low as les than half of the sample frequency, the output will generate a beat
frequency.

<- Input frequency at 835Hz

<- Output of digital filter,
Please note the beat frequency.

Digital debounce circuit work at 1IKHZ sample rate and observe the output of filter from 835Hz input

Software debounce will consumes the CPU time a lot, we do not recommend to use except for you
really know you want.

Input interrupt

You can scan the input by polling, but the CPU will spend a lot of time to do null task. Another way
is use a timer to sample the input at adequate time (remind the Nyquist-Shannon sampling theorem, at
least double of the input frequency). The third one is directly allows the input to generate interrupt to
CPU. To use direct interrupt from input, the noise coupled from input must take special care not to
mal-trigger the interrupt.

10

Read back of Output status

Some applications need to read back the output status, if the card do not provide output status read
back, you can use a variable to store the status of output before you really command it output. Some
cards provide the read back function but please note that the read back status is come from the output
register, not from the real physical output.

11

7. Software overview

These topics describe the features and functionality of the AI03315 boards and briefly describes its
functions.

7.1 Initialization and close

You need to initialize system resource each time you run your application.
Al03315 initial() will do.

Once you want to close your application, call
Al03315 close() to release all the resource.

If you want to know the physical address assigned by OS. Use
Al03315 info() to get the address and CardType

7.2 DA (Digital to analog) function
The digital to analog conversion function is implemented by hardware, to output analog voltage
just use:

AlO3315 DA set(), and you can also read back the settings by

AlO03315 DA read().

7.3 AD (Analog to digital) function
The analog input maybe single end or differential, you can configure individual channel as single
end input or the corresponding pair as differential input by:
Al0O3315 AD config set() and read back to verify the configuration setting by
AlO3315 AD config read().
The analog inputs maybe at different voltage range, you can configure the adequate input range to
fit the inputs by:
Al0O3315 AD range_set() and read back to verify the settings by:
Al03315 AD range read()
Once the input type and input range has been set, you can start AD conversion by:
AlO3315 AD start () and read the conversion data by
Al03315 AD read().
To read a specific port (contains 8 channels) use:
Al03315 AD all read()

7.4 1/0 Port RIW
Before using a 10 port, you must configure the port direction (as input or as output) first by
Al0O3315 port _config set() and any time you can read back configuration by
AlO3315 port config read()

12

Mechanical contact or noisy environment always induced unstable state at digital inputs, the
AIO3315 provides software selectable debounce function (the former digital 10 cards use hardware
debounce and fixed at one frequency). You can filter out the pulse width at 10ms (100Hz), 5ms (200Hz),
1ms (1KHz) or no filter as you need.

Use
AlO3315 debounce time_set() to select the debounce frequency and read back the setting by
AlO3315 debounce tme read().
Then you can use the following functions for 1/0 port output, data reading and control:
AlO3315 port set() to output byte data to output port,
AlO3315 port read() to read a byte data from 1/O port,
AlO3315 point set () to set output bit,
Al103315 point read() to read I/O bit,

7.5 Timer function
There is a build in 32 bit timer run on 1us time base, you can set the timer constant by
AlO3315 timer set() and
AlO3315 timer read() to read timer value on the fly.
AlO3315 timer start() to star its operation,
AlO3315 timer stop() to stop operation.
For the timer related registers use:
AlO3315 TC set() to set registers,
AlO3315 TC read() to read back registers.

7.6 Interrupt function
Sometimes you want your application to take care of the 1/O while special event occurs, interrupt
function is the right choice. A103315 provide 1000 ~ 1007 as external event trigger input. You may
configure the trigger polarity by:
Al03315 IRQ polarity set() and read back by
Al03315 IRQ polarity read()
For timer ans digital 10 interrupts, you can mask off the source you don’ want by
AlO03315 IRQ mask set() and read back by
AlO3315 IRQ mask read().
After all the above is prepared, you must first link your service routine to the driver by
Al03315 IRQ process link()
Now all is ready, you can enable the interrupt by
AlO03315 IRQ enable() or disable by
AlO3315 IRQ disable().
To read back the interrupt status (at interrupt service routine or polling routine) use
Al03315 IRQ status read().
After reading the status register on card will be cleared.

13

7.7 Error conditions
AIO3315 cards minimize error conditions. There are three possible fatal failure modes:

€ System Fail Status Bit Valid
4 Communication Loss

€ Hardware not ready

These error types may indicate an internal hardware problem on the board. Error Codes contains a
detailed listing of the error status returned by A103315 functions.

14

8. Flow chart of application implementation

8.1 AIO03315 Flow chart of application implementation

(Application Start)

Driver Initial
status=AI03315 _initial()

nitial success
Status=0? No

Yes

Operation of AIO3315 card Error
Set outport data status=Al03315 _port_set()
or Read l/O port data status=AlO3315 _port_read()
or Read IO point state status=AIO3315 _point_read()
or Set Out point state status=AIO3315 _point_set()

Exit

Close application
Release DIl resource
status=Al03315 _close()

Exception process

End

AlO03315 _link_IRQ_process

(Interrupt setup)
link interrupt senice routine

AlO3315 _IRQ_polarity_set to driver

setup digital input interrupt polarity

AlO3315 _IRQ enable
enable interrupt

AlO3315 _IRQ_mask_set
setup the interrupt mask

end

15

9. Function reference

9.1 Function format
Every A103315 function is consist of the following format:

Status = function_name (parameter 1, parameter 2, ... parameter n);

Each function returns a value in the Status global variable that indicates the success or failure of
the function. A returned Status equal to zero that indicates the function executed successfully. A
non-zero status indicates failure that the function did not execute successfully because of an error, or
executed with an error.
Note: Status is a 32-bit unsigned integer.

The first parameter to almost every A103315 function is the parameter CardID which is located
the driver of AIO3315 board you want to use those given operation. The CardID is assigned by
DIP/ROTARY SW. You can utilize multiple devices with different card CardID within one application;
to do so, simply pass the appropriate CardID to each function.

Note: CardID is set by DIP/ROTARY SW (0x0-0xF)

These topics contain detailed descriptions of each AIO3315 function. The functions are arranged
alphabetically by function name. Refer to AIO3315 Function Reference for additional information.

16

9.2 Variable data types
Every function description has a parameter table that lists the data types for each parameter. The
following sections describe the notation used in those parameter tables and throughout the manual for
variable data types.

17

Primary Type Names
_— . Pascal
Name | Description Range C/C++ Visual BASIC (Borland Delphi)
ug | 8-bit ASClII 0 to 255 char Not supported by BASIC. Byte
character For functions that require
character arrays, use string
types instead.
116 | 16-bit signed |-32,768 to 32,767| short Integer Smallint
integer (for example:
deviceNum%)
U16 16-bit 0 to 65,535 unsigned | Not supported by BASIC. Word
unsigned short for For functions that require
integer 32-bit unsigned integers, use the
compilers | signed integer type instead.
See the 116 description.
132 | 32-bit signed |-2,147,483,648 to long Long Longint
integer 2,147,483,647 (for example: count&)
u32 32-hit 0to unsigned | Not supported by BASIC. |Cardinal (in 32-bit
unsigned 4,294,967,295 long For functions that require operating
integer unsigned long integers, use systems).
the signed long integer type | Refer to the i32
instead. S_ee_the 132 description.
description.
F32 32-hit -3.402823E+38 float Single (for example: num!) Single
single-precisio|to 3.402823E+38
n
floating-point
value
F64 64-bit -1.797683134862| double |Double (for example: voltage Double
double-precisi| 315E+308 to Number)
on 1.797683134862
floating-point| 315E+308
value
Table 2

9.3 Programming language considerations

Apart from the data type differences, there are a few language-dependent considerations you need
to be aware of when you use the AIO3315 API. Read the following sections that apply to your
programming language.

Note: Be sure to include the declaration functions of AIO3315 prototypes by including the appropriate
AIO3315 header file in your source code. Refer to Building Applications with the AIO3315 Software
Library for the header file appropriate to your compiler.

931 C/C++

For C or C++ programmers, parameters listed as Input/Output parameters or Output parameters are
pass-by-reference parameters, which means a pointer points to the destination variable should be passed
into the function. For example, the Read Port function has the following format:

Status = A103315_port_read (u8 CardID, u8 port, ug*data);

where CardID and port are input parameters, and data is an output parameter. Consider the following
example:

u8 CardID, port;

u8 data,

u32 Status;

Status = A103315_port_read (CardID, port, &data);

9.3.2 Visual basic

The file Al03315.bas contains definitions for constants required for obtaining DIO Card
information and declared functions and variable as global variables. You should use these constants
symbols in the A103315.bas, do not use the numerical values.

In Visual Basic, you can add the entire AIO3315.bas file into your project. Then you can use any
of the constants defined in this file and call these constants in any module of your program. To add the
AI103315.bas file for your project in Visual Basic 4.0, go to the File menu and select the Add File...
option. Select AIO3315.bas, which is browsed in the AIO3315 \ API directory. Then, select Open to add
the file to the project.

To add the AlO03315.bas file to your project in Visual Basic 5.0 and 6.0, go to the Project menu and

select Add Module. Click on the Existing tab page. Select AI0O3315.bas, which is in the A103315 \ API
directory. Then, select Open to add the file to the project.

18

9.3.3 Borland C++ builder
To use Borland C++ builder as development tool, you should generate a .lib file from the .dll file by
implib.exe.
implib AIO3315BC.lib A103315.dll
Then add the AIO3315BC.lib to your project and add
#include “Al03315.h” to main program.

Now you may use the dll functions in your program. For example, the Read Port function has the
following format:

Status = A103315_port_read (u8 CardID, u8 port, ug*data);

where CardID and port are input parameters, and data is an output parameter. Consider the following
example:

u8 CardID, port;

u8 data;

u32 Status;

Status = A103315_port_read (CardID, port, &data);

19

9.4 AIO3315 Functions

Initialization and close

® AIO3315 initial

Format : u32 status =AI103315 initial (void)
Purpose: Initial the AIO3315 resource when start the Windows applications.

® AIO3315 close

Format : u32 status =Al103315 close (void);
Purpose: Release the AIO3315 resource when close the Windows applications.

® AIO3315 info

Format : u32 status =Al103315_info(u8 CardID, u8 *CardType, ul6 *DIO_address,
ulé *TC_address);
Purpose: Read the physical 1/0 address assigned by O.S.

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
Output:
Name Type Description
CardType u8 0: AlO3315 (12 bit version)
1: AIO3315A (16 bit version)
DIO_address ulé physical 1/0 address assigned to DIO block by
0OS
TC_address ulé physical I/O address assigned to timer block by
0OS

20

DABLOCK

AlO3315 DA set

Format : u32 status = A1O3315 DA set(u8 CardID,u8 channel, ul6 data)
Purpose: DA output

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
channel us8 0: DAO channel
1: DA1 channel
data ulé 0~0xfff (A103315) ~ 0~Oxffff (AIO3315A)

for analog output amplitude 0V ~ 10V

0V output is OX7ff (A103315) Ox7fff (AIO3315A)
-10V output is 0,

10V output is Oxfff (A103315) Oxffff (AIO3315A)

AlO3315 DA read

Format : u32 status = A103315 DA read(u8 CardID,u8 channel, ul6 *data)
Purpose: read back DA setting data

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
channel ug 0: DAO channel
1: DA1 channel
Output:
Name Type Description
data ulé 0~Oxfff (A103315) ~ 0~Oxffff (AIO3315A)
for analog output 10V ~ 10V
OV output is Ox7ff (A103315) Ox7fff (AIO3315A)
-10V output is 0,
10V output is Oxfff (A1O03315) Oxffff (AIO3315A)

21

AD BLOCK

® AlO3315 AD config set

Format : u32 status = A103315_AD_config_set (u8 CardID, u8 port,
AD_config *AD_config)
Purpose: configure each channel as differential or single end.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port us 0: port0, ADOx
1: portl, AD1x
2: port2, AD2x
3: port3, AD3x
AD_config | AD_config [struct _AD_config{

u8 ch01_config,
u8 ch23_config,
u8 ch45_ config,
u8 ch67_ config
}
// ch0l1: AIx0~Alx1
Il ch23: Alx2~Alx3
/I ch45: Alx4~Alx5
Il ch67: AIX6~AIX7
/I chNM_config:
/10: chNM is paired differential and polarity is normal
/I1: chNM is paired differential and polarity is inverse
/12: invalid
/13: chNM is single end
For example, if you will configure
channel 0,1 as differential with polarity normal,
channel 2,3 as single end
channel 4,5, channel 6,7 as differential with inverse
polarity then struct AD_config is {0,3,1,1}

22

® AIO3315 AD config read

Format : u32 status = A103315_AD_config_read (u8 CardID, u8 port,
AD_config*AD_config)
Purpose: read back configuration of each channel.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port us 0: port0, ADOx
1: portl, AD1x
2: port2, AD2x
3: port3, AD3x
Output:
Name Type Description
AD_config| AD_config |struct _AD_config{
u8 ch01_config,
u8 ch23_config,
u8 ch45_ config,
u8 ch67_ config
}

23

® AIO3315 AD range set

Format : u32 status = A1I0O3315 AD range_set(u8 CardID, u8 port, AD_range *AD_range)
Purpose: set up each group conversion range

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
port us 0: port0, ADOx

1: portl, AD1x
2: port2, AD2x

3: port3, AD3x

AD_range AD range |struct AD_ Range{
u8 chO_ range,
u8 chl_range,
u8 ch2_ range,
u8 ch3_range
u8 ch4_ range,
u8 ch5_ range,
u8 ch6_ range,
u8 ch7_range
}

/I chN_range

//0: +-5V

/I1: 0-5V

112: +-10V

/13: 0-10V

Note:

If the even channel is configured as differential input, the next odd number channel member is
invalid.

For example chO0 is configured as differential input by A1O3315_AD_config_set, then the
AD_Range.chl_range is of no use.

24

® AlO3315 AD range read

Format : u32 status = A1I0O3315_AD range read(u8 CardID, u8 port,
AD_range *AD_range)
Purpose: read back each group conversion range setting

Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
port us 0: port0, ADOx
1: portl, AD1x
2: port2, AD2x
3: port3, AD3x
Output:

Name Type Description

AD_range AD_range |struct _AD_Range{
u8 ch0_ range,
u8 chl_range,
u8 ch2_ range,
u8 ch3_ range
u8 ch4_ range,
u8 ch5_ range,
u8 ch6_ range,
u8 ch7_ range

}
// chN_range

/10: +-5V
/11: 0-5V
/12: +-10V
/13: 0-10V

® AIO3315 AD start

Format : u32 status = A103315_AD_start(u8 CardID,u8 port,u8 channel)
Purpose: start AD conversion of designated port and channel
Parameters:

Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port us 0: port0, ADOx

1: portl, AD1Xx
2: port2, AD2x
3: port3, AD3x

channel u8 0~7, channel no for portN

25

® AIO3315 AD read
Format : u32 status = A10O3315 AD_read(u8 CardID,u8 port,ul6 *data)
Purpose: read AD conversion data of previous designated port and channel

Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
port us 0: port0, ADOx
1: portl, AD1x
2: port2, AD2x
3: port3, AD3x
Output:
Name Type Description
data ule | O0~Oxfff (AlIO3315),
0~Oxffff (AIO3315A).
AD converted data
Note:

1. A103315_AD_start will select the port and channel for the next AD operation.

2. Before read back the data by A103315_AD_read, you must check the status by
Al103315_IRQ_status_read (no matter you use interrupt or not) to confirm the AD data is
ready.

3. The AD conversion time frame is as follows:

A
1.AD start 0 3.AD start 1 5.AD start 2
2. unknown_AD 4.start 0_AD 6.start 1 AD
> {
frame0 framel frame2

At the same time frame, the command start the designated AD channel and collect the converted data. In
order to confirm the operation is complete, we suggest to use A103315 IRQ_status_read to verify the
completeness of conversion then use AI03315_AD_read to read the converted data.

26

® AIO3315 AD all read

Format : u32 status = A10O3315 AD all_read(u8 CardID,u8 port, ul6 data[8])
Purpose: read AD conversion data of all channels of a specific port.
Parameters:

Input:
Name Type Description
CardID u8 | assigned by jumper setting
port u8 | 0: port0, ADOX
1: portl, AD1x
2: port2, AD2x
3: port3, AD3x
Output:
Name Type Description
data[8] ulé | 0~Oxfff (AlO3315),
0~Oxffff (AIO3315A).
AD converted data
Note:

To read all channels, please follow the swquence:
1. Set up start channel at channel 0 by A103315_AD _start.
2. Read all channels by A103315_AD_all_read.

27

1/0 Port R/W

® AIlO3315 port config set

Format : u32 status =Al03315 port_config_set (u8 CardID, u8 port, u8 configuration)
Purpose: Sets port configuration.

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port us8 port number
0: port0
1: portl
configuration us8 bO0:

0: port0 as input port (default)
1: port0 as output port

bl:
0: portl as input port (default)
1: portl as output port

® AIlO3315 port config read

Format : u32 status =Al103315_port_config_read (u8 CardID, u8 port,u8 *configuration)
Purpose: read port configuration.

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port u8 port number
0: port0
1: portl
Output:
Name Type Description
configuration us8 bO0:

0: port0 as input port (default)
1: port0 as output port

bl:
0: portl as input port (default)
1: portl as output port

28

® AIO3315 debounce time set
Format : u32 status = A103315_debounce_time_set (u8 CardID,u8 port ,u8 debounce_time)

Purpose: set the input port debounce time

Parameters:
Input:
Name Type Description
CardID ug assigned by Rotary SW
port us port number
0: port0
1: portl
debounce_time u8 Debounce time selection:

0: no debounce

1: filter out duration less than 10ms
(default)

2: filter out duration less than 5ms

3: filter out duration less than 1ms

Note: only valid for port configured as input

® AIO3315 debounce time read
Format : u32 status = A103315_debounce_time_read (u8 CardID,u8 port,
u8 *debounce_time)
Purpose: To read back configuration of debounce mode

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port u8 port number
0: port0
1: portl
Output:
Name Type Description
debounce_time us8 Debounce time selection:

0: no debounce

1: filter out duration less than 10ms
(default)

2: filter out duration less than 5ms

3: filter out duration less than 1ms

29

® AIO3315 port set

Format : u32 status = AIO3315 port_set (u8 CardID,u8 port, u8 data)
Purpose: Sets the output data.

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port us8 port number
0: port0
1: portl
data us8 bitmap of output values

If port is configured as input, the data is registered
and do not output.
If port is configured as output, the data is registered
and output.

Note: If you change the configuration from input to output, the previous registered data will be
output.

® AIlO3315 port read

Format : u32 status = A1O3315 port_read (u8 CardID , u8 port, u8 *data)
Purpose: Read the register or input values of the 1/0O port.

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port us8 port number
0: port0
1: portl
Output:
Name Type Description
data us8 I/O data

If port is configured as input, the
data is external input data.

If port is configured as output, the
data is the output register data.

30

® AIO3315 point set

Format : u32 status =Al03315 point_set (u8 CardID, u8 port, u8 point, u8 state)
Purpose: Sets the bit data of output port.

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port us port number
0: port0
1: portl
point u8 point number
0~7 for bitO~bit7
state u8 state of output point
If port is configured as input, the data is
registered and do not output.
If port is configured as output, the data is
registered and output.

Note: If you change the configuration from input to output, the previous registered data will be output.

® AIO3315 point read

Format : u32 status =Al103315 point_read (u8 CardID, u8 port, u8 point, u8 *state)
Purpose: Read the state of the input points or output register.

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
port u8 port number
0: port0
1: portl
point u8 point number of input
0~7 for bitO~bit7
Output:
Name Type Description
state u8 state of point of input

If port is configured as input, the data is
external input data.

If port is configured as output, the data is
the output register data.

31

Timer function

® AIO3315 timer set

Format : u32 status = A103315_timer_set (u8 CardID,u32 Timer_constant)
Purpose: set time constant.

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Timer_constant u32 Timer _constant based on 1us time base
Note:

1. Time constant is based on 1us clock, period T= (time_constant +1) * 1us

2. If you also enable the timer interrupt, the period T must at least larger than the system interrupt
response time else the system will be hanged by excess interrupts.

® AIlO3315 timer read

Format : u32 status = A1O3315 timer_read (u8 CardID, u32 * Timer_constant)
Purpose: To read timer value on the fly

Parameters:
Input:
Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Output:
Name Type Description
Timer_constant u32 timer value on the fly

® AIO3315 timer start
Format : u32 status = AIO3315_timer_start (u8 CardID)
Purpose: start timer function.
Parameters:
Input:

Name Type Description
CardID u8 assigned by DIP/ROTARY SW

32

® AIO3315 timer stop

Format : u32 status = A1O3315_timer_stop (u8 CardID)
Purpose: stop timer function.
Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW

® AIO3315 TC set

Format :
Purpose:
Parameters
Input:

u32 status= AI03315 TC set (u8 CardID,u8 index,u32 data)
To load data to timer related registers

Name Type Description
CardID u8 assigned by DIP/ROTARY SW
index ug 0: TC_CONTROL
1: PRELOAD
2: TIMER
data u32 For index = TC_CONTROL

0: stop timer operation
1: timer run

For index = PRELOAD or TIMER
Data is the constant to be load

Note : PRELOAD is the register for timer to re-load, the value will be valid while timer count to
zero and reload the data.

AlO3315 TC read
Format : u32 status= A103315 TC_read (u8 CardID,u8 index,u32 *data)
Purpose: To read data from timer related registers
Parameters:
Input:
Name Type Description
CardID ug assigned by DIP/ROTARY SW
index u8 0: TC_CONTROL
1: PRELOAD
2: TIMER
Output:
Name Type Description
data u32 Data read back

33

Interrupt function

® AIO3315 IRO polarity set

Format :
Purpose:

Input:

u32 status = A103315_IRQ _polarity_set (u8 CardID, u8 polarity)

Sets the IRQ polarity of port0 (1000~1007)
Parameters:

Name

Type

Description

CardID

us

assigned by Rotary SW

polarity

us

Data to be set, 0x0 ~ Oxff
bit0: 1000

0:normal (default)
l:invert

bit7: 1007
0:normal (default)
l:invert

Note: Port0 must configured as input port for IO00~1007 IRQ function.

® AlO3315 IRO polarity read

Format : u32 status = A103315 IRQ_polarity_read (u8 CardID, u8 *polarity)
Purpose: Read the IRQ polarity of the I000~1007
Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
Output:
Name Type Description
polarity u8 Data to be set, 0x0 ~ Oxff
bit0: 1000
0:normal (default)
1:invert
bit7: 1007
0:normal (default)
1:invert

34

® AIO3315 IRO mask set

Format : u32 status = AIO3315 IRQ_mask_set (u8 CardID,u8 source, u8 mask)
Purpose: Mask interrupt from port0 1007~1000 or timer

Parameters:
Input:
Name Type Description
CardID ug assigned by Rotary SW
source u8 0O:digital 1/O block
1: AD block
2: timer block
mask u8 Digital 10 block:

b0=0, 1000 input disable irq
b0=1, 1000 input can generate irq

b7=0, 1007 input disable irq
b7=1, 1007input can generate irq

AD block:

b0=1 means ADO end of conversion can
generate interrupt

b0=0 ADO will not generate interrupt
while end of conversion

b1=1 means AD1 end of conversion can
generate interrupt

b1=0 AD1 will not generate interrupt
while end of conversion

b2=1 means AD2 end of conversion can
generate interrupt

b2=0 AD2 will not generate interrupt
while end of conversion

b3=1 means AD3 end of conversion can
generate interrupt

b3=0 AD3 will not generate interrupt
while end of conversion

Timer block:

b0=1 means timer count up can generate
interrupt

b0=0 timer will not generate interrupt
while time up

35

® AlO3315 IRO mask read

Format : u32 status = A103315 IRQ_mask read (u8 CardID,u8 source,u8 *mask)
Purpose: read back interrupt Mask of 1007~1000 or ADC or timer
Parameters:

Input:
Name Type Description
CardID u8 assigned by Rotary SW
source u8 O:digital 1/0 block
1: AD block
2: timer block
Output:
Name Type Description
mask us Digital 10 block:

b0=0, 1000 input disable irq
b0=1, 1000 input can generate irq

b7=0, 1007 input disable irq
b7=1, 1007input can generate irg

AD block:

b0=1 means ADO end of conversion can generate
interrupt

b0=0 ADO will not generate interrupt while end
of conversion

b1=1 means AD1 end of conversion can generate
interrupt

b1=0 AD1 will not generate interrupt while end
of conversion

b2=1 means AD2 end of conversion can generate
interrupt

b2=0 AD2 will not generate interrupt while end
of conversion

b3=1 means AD3 end of conversion can generate
interrupt

b3=0 AD3 will not generate interrupt while end
of conversion

Timer block:

b0=1 means timer count up can generate
interrupt

b0=0 timer will not generate interrupt while time
up

36

® AIO3315 IRO process link

Format : u32 status = A103315 IRQ process_link (u8 CardID,

void (__stdcall *callbackAddr)(u8 CardID))
Purpose: Link irg service routine to driver

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
callbackAddr void callback address of service
routine

® AIO3315 IRQ enable

Format : u32 status = A103315 IRQ_enable (u8 CardID, HANDLE *phEvent)

Purpose: Enable interrupt from selected source

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
Output:
Name Type Description
phEvent HANDLE event handle

® AIO3315 IRQ disable

Format : u32 status = A103315 IRQ disable (u8 CardID)

Purpose: Disable interrupt from selected source
Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

37

® AlO3315 IRO status read

Format : u32 status = A103315 IRQ status_read (u8 CardID,u8 source, u8 *Event_Status)
Purpose: To read back the interrupt status to identify the source

Parameters:
Input:
Name Type Description
CardID u8 assigned by Rotary SW
source ug O:digital 1/0O block

1: AD block
2: timer block

Output:

Name Type Description
Event_Status ug Digital 10 block:

b0=1, 1000 input generate irq
b7=1, 1007 input generate irq
AD block:
b0=1, ADO end of conversion and data is
ready
b0=0, ADO is under conversion
b1=1, AD1 end of conversion and data is
ready
b1=0, AD1 is under conversion
b2=1, AD2 end of conversion and data is
ready
b2=0, AD2 is under conversion
b3=1, AD3 end of conversion and data is
ready
b3=0, AD3 is under conversion
Timer block:
b0=1 means timer count up occurred.
b0=0 means timer not count up.

Note:

1. Status read back will also clear the on board status register.
2. The status will reflect the on board digital input or timer count up status are irrelevant to the
IRQ_MASK

38

9.5 DIl list

Function Name Description
1. |AIO3315 initial() AIO3315 Initial
2. |Al03315 close() Al03315 Close
3. |AlO3315 info() get OS. Assigned address
4. |AI03315 DA set() DA output
5. |Al03315 DA read() read back DA setting data
6. |AI03315_AD_config_set() gﬁgfigure each channel as differential or single
7. |AlO03315 AD_config_read() read back configuration of each channel
8. |[AlO3315 AD range set() set up each group conversion range
9. |AlO3315 AD range read() Read back each group conversion range setting
10./Al03315 AD start() start AD conversion of designated channel
11./|Al03315 AD read() read AD conversion data
12./|Al03315 AD all read() Read a specific port AD data
13.|Al03315 port_config_set() Port direction configuration
14.| A103315 port_config read() Read back port configuration
15.|A103315 debounce_time_set() Set input port debounce time
16.| A103315 debounce_time read() |Read back input port debounce time
17.|Al03315 port_set() Set Output port
18.|A103315 port_read() Read the register or input values of the 1/0 port
19./A103315_point_set () Set the bit data of output port
20.| AI03315_point_read() Rea_ld the state of the input points or output

register

21.|Al103315 timer_set() Set timer constant
22.|Al03315 timer_read() Read timer on the fly
23.|Al03315 timer_start() Start timer operation
24.|Al03315 timer_stop() Stop timer operation
25.|Al03315 TC set() load data to timer related registers
26.|Al03315 TC read() Read back data of timer related registers
27.|A103315_IRQ polarity_set() Sets the IRQ polarity of portO
28.|Al103315 IRQ polarity read() Read back the setting of IRQ polarity
29.|Al03315 IRQ mask set() Mask off the IRQ
30.|Al03315 IRQ mask read() Read back the mask
31.|AlO3315 IRQ process_link() Link irg service routine
32.|Al03315 IRQ enable() Enable interrupt function
33.|Al03315 IRQ disable() Disable interrupt function
34.|Al03315 IRQ status_read() Read back the IRQ status

39

10. A103315 Error codes table

Error .
Code Symbolic Name

Description

0 |DRV_NO _ERROR

No error.

1 |DRV_READ DATA ERROR

Read data error

2 |DRV_INIT_ERROR

Driver initial error

100 |DEVICE_IO_ERROR

Device Read/Write error

101 |DRV_NO _CARD

No AlO3315 card on the system.

102 |DRV_DUPLICATE_ID

AIl03315 CardID duplicate error.

103 |DRV_NOT_INSTALL

AIO3315 driver not installed completely

300 |ID_ERROR

Function input parameter error. CardID
setting error, CardID doesn’t match the DIP
SW setting

301 |PORT_ERROR

Function input parameter error.
Parameter out of range.

302 |POINT_ERROR

Function input parameter error.
Parameter out of range.

303 |DATA_ERROR

Function input parameter error.
Parameter out of range.

304 |CONFIGURATION_ERROR

Hardware version can not match with
software version

305 |DEBOUNCE_TIME_ERROR

Debounce timer setting error

400 |INDEX_ERRROR

TC register index error

401 |CONSTANT_ERROR

Time constant error

402 |TC_CONTROL_ERROR

TC control register setting error

500 |DA_DATA_ERROR

DA setting data error

501 |DA_CHANNEL_ERROR

DA channel selection error

600 |AD_PORT_ERROR

AD port selection error

601 |AD_CHANNEL_ERROR

AD channel selection error

602 |AD_CONFIG_ERROR

AD channel configuration error

603 |AD_RANGE_ERROR

AD range setting error

700 |SOURCE_ERROR

IRQ source error

701 |POLARITY_ERROR

IRQ polarity error

702 |MASK_ERROR

IRQ mask error

	Correction record
	Contents
	1. How to install the software of AIO3315
	1.1 Install the PCI driver

	2. Where to find the file you need
	3. About the AIO3315 software
	3.1 What you need to get started
	3.2 Software programming choices

	4. AIO3315 Language support
	4.1 Building applications with the AIO3315 software library
	4.2 AIO3315 Windows libraries

	5. Basic concepts of analog I/O control
	6. Basic concepts of digital I/O control
	7. Software overview
	7.1 Initialization and close
	7.2 DA (Digital to analog) function
	7.3 AD (Analog to digital) function
	7.4 I/O Port R/W
	7.5 Timer function
	7.6 Interrupt function
	7.7 Error conditions

	8. Flow chart of application implementation
	8.1 AIO3315 Flow chart of application implementation

	9. Function reference
	9.1 Function format
	9.2 Variable data types
	9.3 Programming language considerations
	9.4 AIO3315 Functions
	Initialization and close
	AIO3315_initial
	AIO3315_close
	AIO3315_info

	DA BLOCK
	AIO3315_DA_set
	AIO3315_DA_read

	AD BLOCK
	AIO3315_AD_config_set
	AIO3315_AD_config_read
	AIO3315_AD_range_set
	AIO3315_AD_range_read
	AIO3315_AD_start
	AIO3315_AD_read
	AIO3315_AD_all_read

	I/O Port R/W
	AIO3315_port_config_set
	AIO3315_port_config_read
	AIO3315_debounce_time_set
	AIO3315_debounce_time_read
	AIO3315_port_set
	AIO3315_port_read
	AIO3315_point_set
	AIO3315_point_read

	Timer function
	AIO3315_timer_set
	AIO3315_timer_read
	AIO3315_timer_start
	AIO3315_timer_stop
	AIO3315_TC_set
	AIO3315_TC_read

	Interrupt function
	AIO3315_IRQ_polarity_set
	AIO3315_IRQ_polarity_read
	AIO3315_IRQ_mask_set
	AIO3315_IRQ_mask_read
	AIO3315_IRQ_process_link
	AIO3315_IRQ_enable
	AIO3315_IRQ_disable
	AIO3315_IRQ_status_read

	9.5 Dll list

	10. AIO3315 Error codes table

